Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Vet Med Assoc ; 262(S1): S61-S72, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547589

RESUMO

OBJECTIVE: The study objectives were to 1) determine the mesenchymal stem cell (MSC) surface expression of major histocompatibility complex (MHC) class I and transcriptome-wide gene expression changes following IL-1ß + TGF-ß2 dual licensing and 2) evaluate if IL-1ß + TGF-ß2 dual-licensed MSCs had a greater ability to positively modulate tenocyte function compared to naive MSCs. SAMPLE: Equine bone marrow-derived MSCs from 6 donors and equine superficial digital flexor tenocytes from 3 donors. METHODS: Experiments were performed in vitro. Flow cytometry and bulk RNA sequencing were utilized to determine naive and dual-licensed MSC phenotype and transcriptome-wide changes in gene expression. Conditioned media were generated from MSCs and utilized in tenocyte cell culture assays as a method to determine the effect of MSC paracrine factors on tenocyte function. RESULTS: Dual-licensed MSCs have a reduced expression of MHC class I and exhibit enrichment in functional pathways associated with the extracellular matrix, cell signaling, and tissue development. Additionally, dual-licensed MSC-conditioned media significantly improved in vitro tenocyte migration and metabolism to a greater degree than naive MSC-conditioned media. In tenocytes exposed to IL-1ß, dual-licensed conditioned media also positively modulated tenocyte gene expression. CLINICAL RELEVANCE: Our data indicate that conditioned media containing paracrine factors secreted from dual-licensed MSCs significantly modulates in vitro tenocyte function, which may confer benefits in vivo to healing tendons following injury. Additionally, due to reduced MHC class I expression in dual-licensed MSCs, this technique may also provide an avenue to provide an effective "off-the-shelf" allogenic source of MSCs.


Assuntos
Interleucina-1beta , Células-Tronco Mesenquimais , Tenócitos , Fator de Crescimento Transformador beta2 , Animais , Células-Tronco Mesenquimais/metabolismo , Cavalos , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/genética , Tenócitos/metabolismo , Movimento Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Células Cultivadas
2.
Cell Adh Migr ; 17(1): 1-16, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37439125

RESUMO

MARCKS is an actin and PIP2-binding protein that plays an essential role in neutrophil migration and adhesion; however, the molecular details regarding MARCKS function in these processes remains unclear. Neutrophil adhesion and migration also require the cell surface receptors ß2-integrins. We hypothesized that MARCKS inhibition would alter neutrophil ß2-integrin activation and signaling. We utilized a MARCKS-targeting peptide to inhibit MARCKS in inside-out and outside-in ß2-integrin activation in neutrophils. MANS-mediated MARCKS inhibition had no significant effect on inside-out ß2-integrin activation. MANS treatment significantly attenuated ICAM-1/Mn2+-stimulated static adhesion, cell spreading and ß2-integrin clustering, suggesting a role for MARCKS function in outside-in ß2-integrin activation. Additional work is needed to better understand the molecular mechanisms of MARCKS role in outside-in ß2-integrin activation and signaling.


Assuntos
Antígenos CD18 , Substrato Quinase C Rico em Alanina Miristoilada , Neutrófilos , Alanina , Antígenos CD18/metabolismo , Peptídeos/farmacologia , Transdução de Sinais , Substrato Quinase C Rico em Alanina Miristoilada/antagonistas & inibidores
3.
Stem Cell Res Ther ; 13(1): 477, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114555

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) secrete paracrine factors and extracellular matrix proteins that contribute to their ability to support tissue healing and regeneration. Both the transcriptome and the secretome of MSCs can be altered by treating the cells with cytokines, but neither have been thoroughly investigated following treatment with the specific cytokine transforming growth factor (TGF)-ß2. METHODS: RNA-sequencing and western blotting were used to compare gene and protein expression between untreated and TGF-ß2-treated equine bone marrow-derived MSCs (BM-MSCs). A co-culture system was utilized to compare equine tenocyte migration during co-culture with untreated and TGF-ß2-treated BM-MSCs. RESULTS: TGF-ß2 treatment significantly upregulated gene expression of collagens, extracellular matrix molecules, and growth factors. Protein expression of collagen type I and tenascin-C was also confirmed to be upregulated in TGF-ß2-treated BM-MSCs compared to untreated BM-MSCs. Both untreated and TGF-ß2-treated BM-MSCs increased tenocyte migration in vitro. CONCLUSIONS: Treating equine BM-MSCs with TGF-ß2 significantly increases production of paracrine factors and extracellular matrix molecules important for tendon healing and promotes the migration of tenocytes in vitro.


Assuntos
Células-Tronco Mesenquimais , Fator de Crescimento Transformador beta2 , Animais , Medula Óssea/metabolismo , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Cavalos , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , RNA/metabolismo , Tenascina/genética , Tenascina/metabolismo , Tendões/metabolismo , Fator de Crescimento Transformador beta2/genética , Fatores de Crescimento Transformadores/metabolismo
4.
J Immunol Regen Med ; 162022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35309714

RESUMO

Cytokine manipulation has been widely used to bolster innate healing mechanisms in an array of modern therapeutics. While other anatomical locations have a more definitive analysis of cytokine data, the tendon presents unique challenges to detection that make a complete portrayal of cytokine involvement during injury unattainable thus far. Without this knowledge, the advancement of tendon healing modalities is limited. In this review, we discuss what is known of the cytokine profile within the injured tendinous environment and the unique obstacles facing cytokine detection in the tendon while proposing possible solutions to these challenges. IL-1ß, TNF-α, and IL-6 in particular have been identified as key cytokines for initiating tendon healing, but their function and temporal expression are still not well understood. Methods used for cytokine evaluation in the tendon including cell culture, tissue biopsy, and microdialysis have their strengths and limitations, but new methods and approaches are needed to further this research. We conclude that future study design for cytokine detection in the injured tendon should meet set criteria to achieve definitive characterization of cytokine expression to guide future therapeutics.

6.
Hum Gene Ther ; 32(17-18): 907-918, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33843261

RESUMO

Joint injury can cause posttraumatic inflammation, which if severe enough can lead to posttraumatic osteoarthritis (PTOA), a progressive and debilitating condition. Posttraumatic inflammation is characterized by an influx of T lymphocytes and upregulation of inflammatory cytokines and degradative enzymes by activated chondrocytes and synoviocytes. Intra-articular bone marrow-derived mesenchymal stem cell (BM-MSC) injection for the treatment of osteoarthritis (OA) has been of interest due to the immunomodulatory properties of these cells. Interleukin (IL)-10, a potent immunomodulatory cytokine, has also been investigated as an OA therapeutic. Therefore, the objective of this study was to evaluate the combinatorial effects of BM-MSCs and IL-10 in OA using a gene therapy approach. We hypothesized that BM-MSCs overexpressing IL-10 would have superior immunomodulatory effects leading to increased suppression of T cell proliferation and decreased production of proinflammatory cytokines, providing protection of the extracellular matrix (ECM) in a stimulated, co-culture OA model. Treatment groups included the following: untransduced BM-MSC, adeno-associated virus (AAV)-IL10-transduced BM-MSC, and AAV-null transduced BM-MSC, which were unstimulated or stimulated with IL-1ß/tumor necrosis factor-α (TNF-α). T cell proliferation was significantly decreased by the presence of BM-MSCs, especially when these BM-MSCs were AAV transduced. There was no significant difference in T cell suppression when cells were cultured with AAV-IL10-transduced or AAV-null transduced BM-MSCs. AAV transduction itself was associated with decreased synthesis of IL-1ß, IL-6, and TNF-α. Expression of IL-1ß and MMP13 was downregulated in AAV-transduced BM-MSCs and MMP13 expression was downregulated in cartilage explants co-cultured with AAV-transduced BM-MSCs. Despite mitigation of some proinflammatory cascades, rescue of ECM loss, as determined by glycosaminoglycan quantification and histological evaluation, did not occur in either AAV-IL10-transduced or AAV-null transduced co-cultures. Although IL-10 overexpression may enhance BM-MSC-mediated T cell suppression, we did not observe significant modulation of inflammation-driven cartilage degradation in cultures containing AAV-IL10-transduced BM-MSCs. AAV transduction itself does appear to affect paracrine signaling by BM-MSCs, which warrants further investigation.


Assuntos
Interleucina-10 , Células-Tronco Mesenquimais , Animais , Medula Óssea , Células Cultivadas , Dependovirus/genética , Cavalos , Interleucina-10/genética
7.
Vet Immunol Immunopathol ; 234: 110203, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33636546

RESUMO

BACKGROUND: The immunomodulatory properties of mesenchymal stem cells (MSCs) have been studied extensively due to their increasing clinical application for tissue regeneration and repair following culture expansion. We have studied the effect of continuous passage on the immunomodulatory capacity of equine bone marrow-derived MSCs (BM-MSCs). Equine BM-MSCs were isolated and culture expanded to passage three, six, and nine (P3, P6, P9). Immunomodulatory properties of each passage were assessed using a T cell proliferation assay and cytokine synthesis following stimulation with interferon gamma (IFN-γ). RESULTS: Equine BM-MSCs maintained their primary cell morphology and immunophenotype throughout all passages. T cell proliferation was suppressed by all passages of BM-MSCs, compared to peripheral blood mononuclear cells (PBMCs) alone. There was no significant difference in suppression of T cell proliferation between P3, P6, and P9 BM-MSCs. All passages of BM-MSCs significantly increased cytokine synthesis in response to stimulation with IFN-γ. There were no significant differences in production of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1) or regulate on activation, normal T cell expressed and secreted (RANTES) following stimulation with IFN-γ between P3, P6, and P9 BM-MSCs. P9 BM-MSCs had significantly increased production of tumor necrosis factor alpha (TNF-α), (IL-1ß), and (IL-10) compared to P3 BM-MSCs. Additionally, there was a significant increase in production of (IL-8) in P6 and P9 BM-MSCs in comparison to P3 BM-MSCs. CONCLUSIONS: Our findings demonstrate that culture expansion affects some of the immunomodulatory properties of BM-MSCs in vitro, which may suggest that MSCs isolated from a single collection of bone marrow may be culture expanded, but only those from lower passage numbers would be ideal for clinical application.


Assuntos
Diferenciação Celular/imunologia , Citocinas/imunologia , Imunomodulação , Células-Tronco Mesenquimais/imunologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Citocinas/biossíntese , Feminino , Cavalos , Técnicas In Vitro , Interferon gama/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Masculino , Células-Tronco Mesenquimais/fisiologia
8.
Front Cell Dev Biol ; 9: 628382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614658

RESUMO

Allogeneic mesenchymal stem cells (MSCs) are a promising cell therapy for treating numerous diseases, but major histocompatibility complex (MHC)-mismatched MSCs can be rejected by the recipient's immune system. Pre-treating MSCs with transforming growth factor-ß2 (TGF-ß2) to downregulate surface expression of MHC molecules may enhance the ability of allogeneic MSCs to evade immune responses. We used lymphocyte proliferation assays and ELISAs to analyze the immunomodulatory potential of TGF-ß2-treated equine bone marrow-derived MSCs. T cell activation and cytotoxicity assays were then used to measure the in vitro cell-mediated immunogenicity. Similar to untreated MSCs, TGF-ß2-treated MSCs inhibited T cell proliferation and did not stimulate MHC-mismatched T cells to proliferate. Additionally, similar quantities of prostaglandin E2 and TGF-ß1 were detected in assays with untreated and TGF-ß2-treated MSCs supporting that TGF-ß2-treated MSCs retain their strong immunomodulatory properties in vitro. Compared to untreated MSCs, TGF-ß2-treated MSCs induced less T cell activation and had reduced cell-mediated cytotoxicity in vitro. These results indicate that treating MSCs with TGF-ß2 is a promising strategy to reduce the cell-mediated immunogenicity of MHC-mismatched MSCs and facilitate allogeneic MSC therapy.

9.
Stem Cells Transl Med ; 10(5): 694-710, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33369287

RESUMO

Allogeneic mesenchymal stromal cells (MSCs) have been used clinically for decades, without cross-matching, on the assumption that they are immune-privileged. In the equine model, we demonstrate innate and adaptive immune responses after repeated intra-articular injection with major histocompatibility complex (MHC) mismatched allogeneic MSCs, but not MHC matched allogeneic or autologous MSCs. We document increased peri-articular edema and synovial effusion, increased synovial cytokine and chemokine concentrations, and development of donor-specific antibodies in mismatched recipients compared with recipients receiving matched allogeneic or autologous MSCs. Importantly, in matched allogeneic and autologous recipients, but not mismatched allogeneic recipients, there was increased stromal derived factor-1 along with increased MSC concentrations in synovial fluid. Until immune recognition of MSCs can be avoided, repeated clinical use of MSCs should be limited to autologous or cross-matched allogeneic MSCs. When non-cross-matched allogeneic MSCs are used in single MSC dose applications, presensitization against donor MHC should be assessed.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Aloenxertos , Animais , Quimiocina CXCL12 , Teste de Histocompatibilidade/veterinária , Cavalos , Complexo Principal de Histocompatibilidade , Líquido Sinovial/imunologia , Transplante Autólogo
10.
Front Vet Sci ; 5: 150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023361

RESUMO

Platelet-rich plasma (PRP) preparations are being used with moderate success to treat osteoarthritis (OA) in humans and in veterinary species. Such preparations are hindered, however, by being autologous in nature and subject to tremendous patient and processing variability. For this reason, there has been increasing interest in the use of platelet lysate preparations instead of traditional PRP. Platelet lysate preparations are acellular, thereby reducing concerns over immunogenicity, and contain high concentrations of growth factors and cytokines. In addition, platelet lysate preparations can be stored frozen for readily available use. The purpose of this study was to evaluate the effects of a pooled allogeneic platelet-rich plasma lysate (PRP-L) preparation on equine synoviocytes and chondrocytes challenged with inflammatory mediators in-vitro to mimic the OA joint environment. Our hypothesis was that PRP-L treatment of inflamed synoviocytes would protect chondrocytes challenged with synoviocyte conditioned media by reducing synoviocyte pro-inflammatory cytokine production while increasing synoviocyte anti-inflammatory cytokine production. Synoviocytes were stimulated with either interleukin-1ß (IL-1ß) or lipopolysaccharide (LPS) for 24 h followed by no treatment or treatment with platelet-poor plasma lysate (PPP-L) or PRP-L for 48 h. Synoviocyte growth was evaluated at the end of the treatment period and synoviocyte conditioned media was assessed for concentrations of hyaluronic acid (HA), IL-1ß, tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6). Chondrocytes were then challenged for 48 h with synoviocyte conditioned media from each stimulation and treatment group and examined for gene expression of collagen types I (COL1A1), II (COL2A1), and III (COL3A1), aggrecan (ACAN), lubricin (PRG4), and matrix metallopeptidase 3 (MMP-3) and 13 (MMP-13). Treatment of inflamed synoviocytes with PRP-L resulted in increased synoviocyte growth and increased synoviocyte HA and IL-6 production. Challenge of chondrocytes with conditioned media from PRP-L treated synoviocytes resulted in increased collagen type II and aggrecan gene expression as well as decreased MMP-13 gene expression. The results of this study support continued investigation into the use of pooled PRP-L for the treatment of osteoarthritis and warrant further in-vitro studies to discern the mechanisms of action of PRP-L.

11.
Stem Cell Res Ther ; 8(1): 288, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273086

RESUMO

BACKGROUND: Autologous and allogeneic adult mesenchymal stem/stromal cells (MSCs) are increasingly being investigated for treating a wide range of clinical diseases. Allogeneic MSCs are especially attractive due to their potential to provide immediate care at the time of tissue injury or disease diagnosis. The prevailing dogma has been that allogeneic MSCs are immune privileged, but there have been very few studies that control for matched or mismatched major histocompatibility complex (MHC) molecule expression and that examine immunogenicity in vivo. Studies that control for MHC expression have reported both cell-mediated and humoral immune responses to MHC-mismatched MSCs. The clinical implications of immune responses to MHC-mismatched MSCs are still unknown. Pre-clinical and clinical studies that document the MHC haplotype of donors and recipients and measure immune responses following MSC treatment are necessary to answer this critical question. CONCLUSIONS: This review details what is currently known about the immunogenicity of allogeneic MSCs and suggests contemporary assays that could be utilized in future studies to appropriately identify and measure immune responses to MHC-mismatched MSCs.


Assuntos
Complexo Principal de Histocompatibilidade/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Humanos
12.
Front Vet Sci ; 4: 84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28660198

RESUMO

Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Effective and safe allogeneic therapy may be hindered, however, by recipient immune recognition and rejection of major histocompatibility complex (MHC)-mismatched MSCs. Development of strategies to prevent immune rejection of MHC-mismatched MSCs in vivo is necessary to enhance cell survival and potentially increase the efficacy and safety of allogeneic MSC therapy. The purposes of this study were to evaluate if transforming growth factor-ß2 (TGF-ß2) downregulated MHC expression on equine MSCs and to determine if TGF-ß2 treatment altered the phenotype of MSCs. Equine bone marrow-derived MSCs from 12 horses were treated with 1, 5, or 10 ng/ml TGF-ß2 from initial isolation until MHC expression analysis. TGF-ß2-treated MSCs had reduced MHC I and MHC II surface expression compared to untreated controls. TGF-ß2 treatment also partially blocked IFN-γ-induced upregulation of MHC I and MHC II. Constitutive and IFN-γ-induced MHC I and MHC II expression on equine MSCs was dynamic and highly variable, and the effect of TGF-ß2 was significantly dependent on the donor animal and baseline MHC expression. TGF-ß2 treatment did not appear to change morphology, surface marker expression, MSC viability, or secretion of TGF-ß1, but did significantly increase the number of cells obtained from culture. These results indicate that TGF-ß2 treatment has promise for regulating MHC expression on MSCs to facilitate allogeneic therapy, but further work is needed to maintain MHC stability when exposed to an inflammatory stimulus.

13.
Stem Cell Res Ther ; 8(1): 120, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545510

RESUMO

BACKGROUND: We aimed to determine and compare the in vitro effects of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) and mesenchymal stem cell supernatant (MSC-Sp) on the wound healing capacity of equine corneal fibroblasts using a scratch assay. METHODS: Bone marrow aspirates and eyes were collected from normal, euthanized horses with subsequent isolation and culture of BM-MSCs and corneal stromal cells. Corneal stromal cells were culture-expanded in the culture well of transwell plates and then treated with an autologous BM-MSC suspension (dose: 2.5 × 105/100 µL media with the BM-MSCs contained within the insert well), MSC-Sp solution, or naive culture media (control) for 72 h. A linear defect in confluent cell cultures was created (i.e., corneal scratch assay) to assess the cellular closure ("healing") over time. Three representative areas of the scratch in each culture were photographed at each time point and the scratch area was quantitated using image analysis software (ImageJ). Media from the scratches were analyzed for various growth factors using human enzyme-linked immunosorbent assay (ELISA) kits that crossreact with the horse. RESULTS: There was a significant percentage decrease in the scratch area remaining in the BM-MSC and MSC-Sp groups compared to the control group. There was also a significant percentage decrease in the scratch area remaining in the BM-MSC group compared to the MSC-Sp group at 36 h post-scratch and all time points thereafter. The concentration of transforming growth factor (TGF)-ß1 in the media was significantly higher in the BM-MSC group compared to the control group. CONCLUSIONS: The significant decrease in scratch area in equine corneal fibroblast cultures treated with autologous BM-MSCs compared to MSC-Sp or control treatments suggests that BM-MSCs may substantially improve corneal wound healing in horses. MSC-Sp may also improve corneal wound healing given the significant decrease in scratch area compared to control treatments, and would be an immediately available and cost-effective treatment option.


Assuntos
Células da Medula Óssea/citologia , Lesões da Córnea/patologia , Lesões da Córnea/terapia , Células-Tronco Mesenquimais/citologia , Cicatrização , Animais , Biomarcadores/metabolismo , Ensaio de Imunoadsorção Enzimática , Fator de Crescimento Epidérmico/metabolismo , Feminino , Citometria de Fluxo , Cavalos , Masculino , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA