Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 75(1): 47-54, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34618008

RESUMO

BACKGROUND: As cefiderocol is increasingly being prescribed in clinical practice, it is critical that we understand key mechanisms contributing to acquired resistance to this agent. METHODS: We describe a patient with acute lymphoblastic leukemia and a New Delhi metallo-ß-lactamase (NDM)-5-producing Escherichia coli intra-abdominal infection in whom resistance to cefiderocol evolved approximately 2 weeks after the start of treatment. Through whole-genome sequencing (WGS), messenger RNA expression studies, and ethylenediaminetetraacetic acid inhibition analysis, we investigated the role of increased NDM-5 production and genetic mutations contributing to the development of cefiderocol resistance, using 5 sequential clinical E. coli isolates obtained from the patient. RESULTS: In all 5 isolates, blaNDM-5 genes were identified. The minimum inhibitory concentrations for cefiderocol were 2, 4, and >32 µg/mL for isolates 1-2, 3, and 4-5, respectively. WGS showed that isolates 1-3 contained a single copy of the blaNDM-5 gene, whereas isolates 4 and 5 had 5 and 10 copies of the blaNDM-5 gene, respectively, on an IncFIA/FIB/IncFII plasmid. These findings were correlated with those of blaNDM-5 messenger RNA expression analysis, in which isolates 4 and 5 expressed blaNDM-5 1.7- and 2.8-fold, respectively, compared to, isolate 1. Synergy testing with the combination of ceftazidime-avibactam and aztreonam demonstrated expansion of the zone of inhibition between the disks for all isolates. The patient was successfully treated with this combination and remained infection free 1 year later. CONCLUSIONS: The findings in our patient suggest that increased copy numbers of blaNDM genes through translocation events are used by Enterobacterales to evade cefiderocol-mediated cell death. The frequency of increased blaNDM-5 expression in contributing to cefiderocol resistance needs investigation.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas , Variações do Número de Cópias de DNA , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Expressão Gênica , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos , RNA Mensageiro , beta-Lactamases/genética , Cefiderocol
2.
Nat Commun ; 12(1): 1035, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589603

RESUMO

Stochastic asynchronous replication timing (AS-RT) is a phenomenon in which the time of replication of each allele is different, and the identity of the early allele varies between cells. By taking advantage of stable clonal pre-B cell populations derived from C57BL6/Castaneous mice, we have mapped the genome-wide AS-RT loci, independently of genetic differences. These regions are characterized by differential chromatin accessibility, mono-allelic expression and include new gene families involved in specifying cell identity. By combining population level mapping with single cell FISH, our data reveal the existence of a novel regulatory program that coordinates a fixed relationship between AS-RT regions on any given chromosome, with some loci set to replicate in a parallel and others set in the anti-parallel orientation. Our results show that AS-RT is a highly regulated epigenetic mark established during early embryogenesis that may be used for facilitating the programming of mono-allelic choice throughout development.


Assuntos
Células da Medula Óssea/metabolismo , Cromatina/química , Período de Replicação do DNA , Epigênese Genética , Genoma , Células Precursoras de Linfócitos B/metabolismo , Alelos , Animais , Células da Medula Óssea/citologia , Cromatina/metabolismo , Cromatina/ultraestrutura , Células Clonais , Cruzamentos Genéticos , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Loci Gênicos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Precursoras de Linfócitos B/citologia
3.
Nat Microbiol ; 5(4): 610-619, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32015497

RESUMO

Although much research has been done on the diversity of the gut microbiome, little is known about how it influences intestinal homeostasis under normal and pathogenic conditions. Epigenetic mechanisms have recently been suggested to operate at the interface between the microbiota and the intestinal epithelium. We performed whole-genome bisulfite sequencing on conventionally raised and germ-free mice, and discovered that exposure to commensal microbiota induced localized DNA methylation changes at regulatory elements, which are TET2/3-dependent. This culminated in the activation of a set of 'early sentinel' response genes to maintain intestinal homeostasis. Furthermore, we demonstrated that exposure to the microbiota in dextran sodium sulfate-induced acute inflammation results in profound DNA methylation and chromatin accessibility changes at regulatory elements, leading to alterations in gene expression programs enriched in colitis- and colon-cancer-associated functions. Finally, by employing genetic interventions, we show that microbiota-induced epigenetic programming is necessary for proper intestinal homeostasis in vivo.


Assuntos
Colite/genética , DNA/genética , Epigênese Genética , Microbioma Gastrointestinal/fisiologia , Genoma , Simbiose/genética , Animais , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Colo/metabolismo , Colo/microbiologia , DNA/metabolismo , Metilação de DNA , Sulfato de Dextrana/administração & dosagem , Vida Livre de Germes , Homeostase/genética , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sequenciamento Completo do Genoma
4.
Cell Rep ; 23(11): 3407-3418, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898408

RESUMO

Colorectal adenomas are precursor lesions of colorectal cancers and represent clonal amplifications of single cells from colonic crypts. DNA methylation patterns specify cell-type identity during cellular differentiation and, therefore, provide opportunities for the molecular analysis of tumors. We have now analyzed DNA methylation patterns in colorectal adenomas and identified three biologically defined subclasses that describe different intestinal crypt differentiation stages. Importantly, colorectal carcinomas could be classified into the same methylation subtypes, reflecting their shared cell types of origin with adenomas. Further data analysis also revealed significantly reduced overall survival for one of the subtypes. Our results provide a concept for understanding the methylation patterns observed in colorectal cancer and provide opportunities for tumor subclassification and patient stratification.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/patologia , Metilação de DNA , Adenoma/classificação , Adenoma/genética , Adenoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/classificação , Neoplasias Colorretais/genética , Epigenômica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição/metabolismo
5.
Transl Oncol ; 11(3): 755-763, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29684792

RESUMO

DDX3 is an RNA helicase with oncogenic properties. The small molecule inhibitor RK-33 is designed to fit into the ATP binding cleft of DDX3 and hereby block its activity. RK-33 has shown potent activity in preclinical cancer models. However, the mechanism behind the antineoplastic activity of RK-33 remains largely unknown. In this study we used a dual phosphoproteomic and single cell tracking approach to evaluate the effect of RK-33 on cancer cells. MDA-MB-435 cells were treated for 24 hours with RK-33 or vehicle control. Changes in phosphopeptide abundance were analyzed with quantitative mass spectrometry using isobaric mass tags (Tandem Mass Tags). At the proteome level we mainly observed changes in mitochondrial translation, cell division pathways and proteins related to cell cycle progression. Analysis of the phosphoproteome indicated decreased CDK1 activity after RK-33 treatment. To further evaluate the effect of DDX3 inhibition on cell cycle progression over time, we performed timelapse microscopy of Fluorescent Ubiquitin Cell Cycle Indicators labeled cells after RK-33 or siDDX3 exposure. Single cell tracking indicated that DDX3 inhibition resulted in a global delay in cell cycle progression in interphase and mitosis. In addition, we observed an increase in endoreduplication. Overall, we conclude that DDX3 inhibition affects cells in all phases and causes a global cell cycle progression delay.

6.
J Am Heart Assoc ; 6(2)2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28159817

RESUMO

BACKGROUND: The structural elements of the vascular wall, namely, extracellular matrix and smooth muscle cells (SMCs), contribute to the overall stiffness of the vessel. In this study, we examined the crosslinking-dependent and crosslinking-independent roles of tissue transglutaminase (TG2) in vascular function and stiffness. METHODS AND RESULTS: SMCs were isolated from the aortae of TG2-/- and wild-type (WT) mice. Cell adhesion was examined by using electrical cell-substrate impedance sensing and PicoGreen assay. Cell motility was examined using a Boyden chamber assay. Cell proliferation was examined by electrical cell-substrate impedance sensing and EdU incorporation assays. Cell micromechanics were studied using magnetic torsion cytometry and spontaneous nanobead tracer motions. Aortic mechanics were examined by tensile testing. Vasoreactivity was studied by wire myography. SMCs from TG2-/- mice had delayed adhesion, reduced motility, and accelerated de-adhesion and proliferation rates compared with those from WT. TG2-/- SMCs were stiffer and displayed fewer cytoskeletal remodeling events than WT. Collagen assembly was delayed in TG2-/- SMCs and recovered with adenoviral transduction of TG2. Aortic rings from TG2-/- mice were less stiff than those from WT; stiffness was partly recovered by incubation with guinea pig liver TG2 independent of crosslinking function. TG2-/- rings showed augmented response to phenylephrine-mediated vasoconstriction when compared with WT. In human coronary arteries, vascular media and plaque, high abundance of fibronectin expression, and colocalization with TG2 were observed. CONCLUSIONS: TG2 modulates vascular function/tone by altering SMC contractility independent of its crosslinking function and contributes to vascular stiffness by regulating SMC proliferation and matrix remodeling.


Assuntos
Aorta Torácica/enzimologia , Colágeno/metabolismo , Vasos Coronários/fisiologia , Proteínas de Ligação ao GTP/biossíntese , Músculo Liso Vascular/fisiologia , Transglutaminases/biossíntese , Rigidez Vascular/fisiologia , Animais , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Apoptose , Western Blotting , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/enzimologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Modelos Animais , Músculo Liso Vascular/citologia , Músculo Liso Vascular/enzimologia , Miografia , Proteína 2 Glutamina gama-Glutamiltransferase , Análise de Onda de Pulso , Análise Serial de Tecidos
7.
BMC Cancer ; 17(1): 52, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086829

RESUMO

BACKGROUND: The basic helix-loop-helix transcription factor TWIST1 (Twist) is involved in embryonic cell lineage determination and mesodermal differentiation. There is evidence to indicate that Twist expression plays a role in breast tumor formation and metastasis, but the role of Twist in dysregulating pathways that drive the metastatic cascade is unclear. Moreover, many of the genes and pathways dysregulated by Twist in cell lines and mouse models have not been validated against data obtained from larger, independant datasets of breast cancer patients. METHODS: We over-expressed the human Twist gene in non-metastatic MCF-7 breast cancer cells to generate the estrogen-independent metastatic breast cancer cell line MCF-7/Twist. These cells were inoculated in the mammary fat pad of female severe compromised immunodeficient mice, which subsequently formed xenograft tumors that metastasized to the lungs. Microarray data was collected from both in vitro (MCF-7 and MCF-7/Twist cell lines) and in vivo (primary tumors and lung metastases) models of Twist expression. Our data was compared to several gene datasets of various subtypes, classes, and grades of human breast cancers. RESULTS: Our data establishes a Twist over-expressing mouse model of breast cancer, which metastasizes to the lung and replicates some of the ontogeny of human breast cancer progression. Gene profiling data, following Twist expression, exhibited novel metastasis driver genes as well as cellular maintenance genes that were synonymous with the metastatic process. We demonstrated that the genes and pathways altered in the transgenic cell line and metastatic animal models parallel many of the dysregulated gene pathways observed in human breast cancers. CONCLUSIONS: Analogous gene expression patterns were observed in both in vitro and in vivo Twist preclinical models of breast cancer metastasis and breast cancer patient datasets supporting the functional role of Twist in promoting breast cancer metastasis. The data suggests that genetic dysregulation of Twist at the cellular level drives alterations in gene pathways in the Twist metastatic mouse model which are comparable to changes seen in human breast cancers. Lastly, we have identified novel genes and pathways that could be further investigated as targets for drugs to treat metastatic breast cancer.


Assuntos
Neoplasias da Mama/genética , Transdução de Sinais/genética , Proteína 1 Relacionada a Twist/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Genômica/métodos , Humanos , Neoplasias Pulmonares/genética , Células MCF-7 , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos SCID
8.
PLoS Genet ; 12(2): e1005840, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26886256

RESUMO

Cancers often display gene expression profiles resembling those of undifferentiated cells. The mechanisms controlling these expression programs have yet to be identified. Exploring transcriptional enhancers throughout hematopoietic cell development and derived cancers, we uncovered a novel class of regulatory epigenetic mutations. These epimutations are particularly enriched in a group of enhancers, designated ES-specific enhancers (ESSEs) of the hematopoietic cell lineage. We found that hematopoietic ESSEs are prone to DNA methylation changes, indicative of their chromatin activity states. Strikingly, ESSE methylation is associated with gene transcriptional activity in cancer. Methylated ESSEs are hypermethylated in cancer relative to normal somatic cells and co-localized with silenced genes, whereas unmethylated ESSEs tend to be hypomethylated in cancer and associated with reactivated genes. Constitutive or hematopoietic stem cell-specific enhancers do not show these trends, suggesting selective reactivation of ESSEs in cancer. Further analyses of a hypomethylated ESSE downstream to the VEGFA gene revealed a novel regulatory circuit affecting VEGFA transcript levels across cancers and patients. We suggest that the discovered enhancer sites provide a framework for reactivation of ES genes in cancer.


Assuntos
Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Neoplasias/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Metilação de DNA/genética , Hematopoese/genética , Humanos , Neoplasias/patologia , Proteínas do Grupo Polycomb/metabolismo , Reprodutibilidade dos Testes , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 310(1): H71-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519030

RESUMO

Hydrogen sulfide (H2S) has emerged as an important gasotransmitter in the vasculature. In this study, we tested the hypothesis that H2S contributes to coronary vasoregulation and evaluated the physiological relevance of two sources of H2S, namely, cystathionine-γ-lyase (CSE) and 3-mercaptypyruvate sulfertransferase (MPST). MPST was detected in human coronary artery endothelial cells as well as rat and mouse coronary artery; CSE was not detected in the coronary vasculature. Rat coronary artery homogenates produced H2S through the MPST pathway but not the CSE pathway in vitro. In vivo coronary vasorelaxation response was similar in CSE knockout mice, wild-type mice (WT), and WT mice treated with the CSE inhibitor propargylglycine, suggesting that CSE-produced H2S does not have a significant role in coronary vasoregulation in vivo. Ex vivo, the MPST substrate 3-mercaptopyruvate (3-MP) and H2S donor sodium hydrosulfide (NaHS) elicited similar coronary vasoreactivity responses. Pyruvate did not have any effects on vasoreactivity. The vasoactive effect of H2S appeared to be nitric oxide (NO) dependent: H2S induced coronary vasoconstriction in the presence of NO and vasorelaxation in its absence. Maximal endothelial-dependent relaxation was intact after 3-MP and NaHS induced an increase in preconstriction tone, suggesting that endothelial NO synthase activity was not significantly inhibited. In vitro, H2S reacted with NO, which may, in part explain the vasoconstrictive effects of 3-MP and NaHS. Taken together, these data show that MPST rather than CSE generates H2S in coronary artery, mediating its effects through direct modulation of NO. This has important implications for H2S-based therapy in healthy and diseased coronary arteries.


Assuntos
Vasos Coronários/enzimologia , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfurtransferases/metabolismo , Animais , Células Cultivadas , Vasos Coronários/efeitos dos fármacos , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/deficiência , Cistationina gama-Liase/genética , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Masculino , Camundongos Knockout , Óxido Nítrico/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
10.
Oncotarget ; 6(30): 29901-13, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26337079

RESUMO

DDX3X (DDX3), a human RNA helicase, is over expressed in multiple breast cancer cell lines and its expression levels are directly correlated to cellular aggressiveness. NZ51, a ring-expanded nucleoside analogue (REN) has been reported to inhibit the ATP dependent helicase activity of DDX3. Molecular modeling of NZ51 binding to DDX3 indicated that the 5:7-fused imidazodiazepine ring of NZ51 was incorporated into the ATP binding pocket of DDX3. In this study, we investigated the anticancer properties of NZ51 in MCF-7 and MDA-MB-231 breast cancer cell lines. NZ51 treatment decreased cellular motility and cell viability of MCF-7 and MDA-MB-231 cells with IC50 values in the low micromolar range. Biological knockdown of DDX3 in MCF-7 and MDA-MB-231 cells resulted in decreased proliferation rates and reduced clonogenicity. In addition, NZ51 was effective in killing breast cancer cells under hypoxic conditions with the same potency as observed during normoxia. Mechanistic studies indicated that NZ51 did not cause DDX3 degradation, but greatly diminished its functionality. Moreover, in vivo experiments demonstrated that DDX3 knockdown by shRNA resulted in reduced tumor volume and metastasis without altering tumor vascular volume or permeability-surface area. In initial in vivo experiments, NZ51 treatment did not significantly reduce tumor volume. Further studies are needed to optimize drug formulation, dose and delivery. Continuing work will determine the in vitro-in vivo correlation of NZ51 activity and its utility in a clinical setting.


Assuntos
Azepinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , RNA Helicases DEAD-box/antagonistas & inibidores , Nucleosídeos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Azepinas/química , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Immunoblotting , Células MCF-7 , Camundongos Nus , Estrutura Molecular , Nucleosídeos/química , Interferência de RNA , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Res ; 75(10): 2120-30, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25808873

RESUMO

Chronic inflammation represents a major risk factor for tumor formation, but the underlying mechanisms have remained largely unknown. Epigenetic mechanisms can record the effects of environmental challenges on the genome level and could therefore play an important role in the pathogenesis of inflammation-associated tumors. Using single-base methylation maps and transcriptome analyses of a colitis-induced mouse colon cancer model, we identified a novel epigenetic program that is characterized by hypermethylation of DNA methylation valleys that are characterized by low CpG density and active chromatin marks. This program is conserved and functional in mouse intestinal adenomas and results in silencing of active intestinal genes that are involved in gastrointestinal homeostasis and injury response. Further analyses reveal that the program represents a prominent feature of human colorectal cancer and can be used to correctly classify colorectal cancer samples with high accuracy. Together, our results show that inflammatory signals establish a novel epigenetic program that silences a specific set of genes that contribute to inflammation-induced cellular transformation.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Colite/genética , Neoplasias Colorretais/genética , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Adenoma/imunologia , Adenoma/metabolismo , Animais , Colite/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Metilação de DNA , Epigênese Genética , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL
12.
Front Immunol ; 5: 625, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538709

RESUMO

While most genes in the mammalian genome are transcribed from both parental chromosomes in cells where they are expressed, approximately 10% of genes are expressed monoallelically, so that any given cell will express either the paternal or maternal allele, but not both. The antigen receptor genes in B and T cells are well-studied examples of a gene family, which is expressed in a monoallelic manner, in a process coined "allelic exclusion." During lymphocyte development, only one allele of each antigen receptor undergoes V(D)J rearrangement at a time, and once productive rearrangement is sensed, rearrangement of the second allele is prevented. In this mini review, we discuss the epigenetic processes, including asynchronous replication, nuclear localization, chromatin condensation, histone modifications, and DNA methylation, which appear to regulate the primary rearrangement of a single allele, while blocking the rearrangement of the second allele.

13.
PLoS One ; 9(5): e96090, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24852222

RESUMO

Both mouse and human embryonic stem cells can be differentiated in vitro to produce a variety of somatic cell types. Using a new developmental tracing approach, we show that these cells are subject to massive aberrant CpG island de novo methylation that is exacerbated by differentiation in vitro. Bioinformatics analysis indicates that there are two distinct forms of abnormal de novo methylation, global as opposed to targeted, and in each case the resulting pattern is determined by molecular rules correlated with local pre-existing histone modification profiles. Since much of the abnormal methylation generated in vitro appears to be stably maintained, this modification may inhibit normal differentiation and could predispose to cancer if cells are used for replacement therapy. Excess CpG island methylation is also observed in normal placenta, suggesting that this process may be governed by an inherent program.


Assuntos
Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Ilhas de CpG , Células-Tronco Embrionárias/citologia , Epigênese Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL
14.
Stem Cell Reports ; 2(1): 26-35, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24511468

RESUMO

We show here that singular loss of the Bright/Arid3A transcription factor leads to reprograming of mouse embryonic fibroblasts (MEFs) and enhancement of standard four-factor (4F) reprogramming. Bright-deficient MEFs bypass senescence and, under standard embryonic stem cell (ESC) culture conditions, spontaneously form clones that in vitro express pluripotency markers, differentiate to all germ lineages, and in vivo form teratomas and chimeric mice. We demonstrate that BRIGHT binds directly to the promoter/enhancer regions of Oct4, Sox2, and Nanog to contribute to their repression in both MEFs and ESCs. Thus, elimination of the BRIGHT barrier may provide an approach for somatic cell reprogramming.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Reprogramação Celular , Senescência Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Antígenos CD15/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcriptoma
15.
Nat Struct Mol Biol ; 20(3): 274-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23463312

RESUMO

DNA methylation is an epigenetic mark that is erased in the early embryo and then re-established at the time of implantation. In this Review, dynamics of DNA methylation during normal development in vivo are discussed, starting from fertilization through embryogenesis and postnatal growth, as well as abnormal methylation changes that occur in cancer.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Neoplasias/genética , Ilhas de CpG , Implantação do Embrião , Desenvolvimento Embrionário/genética , Epigênese Genética , Humanos
16.
Annu Rev Biochem ; 81: 97-117, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22404632

RESUMO

DNA methylation represents a form of genome annotation that mediates gene repression by serving as a maintainable mark that can be used to reconstruct silent chromatin following each round of replication. During development, germline DNA methylation is erased in the blastocyst, and a bimodal pattern is established anew at the time of implantation when the entire genome gets methylated while CpG islands are protected. This brings about global repression and allows housekeeping genes to be expressed in all cells of the body. Postimplantation development is characterized by stage- and tissue-specific changes in methylation that ultimately mold the epigenetic patterns that define each individual cell type. This is directed by sequence information in DNA and represents a secondary event that provides long-term expression stability. Abnormal methylation changes play a role in diseases, such as cancer or fragile X syndrome, and may also occur as a function of aging or as a result of environmental influences.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Animais , Doença/genética , Epigenômica , Inativação Gênica , Humanos , Plantas/genética
17.
Nat Rev Immunol ; 11(7): 478-88, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21660052

RESUMO

Cells of the immune system are generated through a developmental cascade that begins in haematopoietic stem cells. During this process, gene expression patterns are programmed in a series of stages that bring about the restriction of cell potential, ultimately leading to the formation of specialized innate immune cells and mature lymphocytes that express antigen receptors. These events involve the regulation of both gene expression and DNA recombination, mainly through the control of chromatin accessibility. In this Review, we describe the epigenetic changes that mediate this complex differentiation process and try to understand the logic of the programming mechanism.


Assuntos
Diferenciação Celular/genética , Epigênese Genética , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Animais , Perfilação da Expressão Gênica , Humanos , Metilação , Recombinação Genética , Éxons VDJ/genética
18.
Genes Dev ; 24(6): 543-8, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20231314

RESUMO

Regenerative capacity is progressively lost with age. Here we show that pregnancy markedly improved liver regeneration in aged mice concomitantly with inducing a switch from proliferation-based liver regeneration to a regenerative process mediated by cell growth. We found that the key mediator of this switch was the Akt/mTORC1 pathway; its inhibition blocked hypertrophy, while increasing proliferation. Moreover, pharmacological activation of this pathway sufficed to induce the hypertrophy module, mimicking pregnancy. This treatment dramatically improved hepatic regenerative capacity and survival of old mice. Thus, cell growth-mediated mass reconstitution, which is relatively resistant to the detrimental effects of aging, is employed in a physiological situation and holds potential as a therapeutic strategy for ameliorating age-related functional deterioration.


Assuntos
Envelhecimento/fisiologia , Regeneração Hepática/fisiologia , Fígado/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Proliferação de Células , Feminino , Hepatectomia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hiperplasia/metabolismo , Hipertrofia/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/cirurgia , Regeneração Hepática/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos , Gravidez , Proteínas , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
19.
Nat Rev Genet ; 10(5): 295-304, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19308066

RESUMO

Both DNA methylation and histone modification are involved in establishing patterns of gene repression during development. Certain forms of histone methylation cause local formation of heterochromatin, which is readily reversible, whereas DNA methylation leads to stable long-term repression. It has recently become apparent that DNA methylation and histone modification pathways can be dependent on one another, and that this crosstalk can be mediated by biochemical interactions between SET domain histone methyltransferases and DNA methyltransferases. Relationships between DNA methylation and histone modification have implications for understanding normal development as well as somatic cell reprogramming and tumorigenesis.


Assuntos
Metilação de DNA , Histonas/metabolismo , Animais , DNA/metabolismo , DNA-Citosina Metilases/metabolismo , Heterocromatina/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Modelos Biológicos , Neoplasias/metabolismo
20.
Nat Genet ; 39(2): 232-6, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17200670

RESUMO

Many genes associated with CpG islands undergo de novo methylation in cancer. Studies have suggested that the pattern of this modification may be partially determined by an instructive mechanism that recognizes specifically marked regions of the genome. Using chromatin immunoprecipitation analysis, here we show that genes methylated in cancer cells are specifically packaged with nucleosomes containing histone H3 trimethylated on Lys27. This chromatin mark is established on these unmethylated CpG island genes early in development and then maintained in differentiated cell types by the presence of an EZH2-containing Polycomb complex. In cancer cells, as opposed to normal cells, the presence of this complex brings about the recruitment of DNA methyl transferases, leading to de novo methylation. These results suggest that tumor-specific targeting of de novo methylation is pre-programmed by an established epigenetic system that normally has a role in marking embryonic genes for repression.


Assuntos
Metilação de DNA , Histonas/metabolismo , Neoplasias/genética , Células CACO-2 , Proteínas de Transporte , Células Cultivadas , Neoplasias do Colo/genética , Ilhas de CpG/genética , Epigênese Genética , Humanos , Lisina/metabolismo , Metilação , Metiltransferases/metabolismo , Proteínas do Envelope Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA