Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 5(23): 4831-4841, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34492704

RESUMO

As part of the inflammatory response by macrophages, Irg1 is induced, resulting in millimolar quantities of itaconate being produced. This immunometabolite remodels the macrophage metabolome and acts as an antimicrobial agent when excreted. Itaconate is not synthesized within the erythron but instead may be acquired from central macrophages within the erythroid island. Previously, we reported that itaconate inhibits hemoglobinization of developing erythroid cells. Herein we show that this action is accomplished by inhibition of tetrapyrrole synthesis. In differentiating erythroid precursors, cellular heme and protoporphyrin IX synthesis are reduced by itaconate at an early step in the pathway. In addition, itaconate causes global alterations in cellular metabolite pools, resulting in elevated levels of succinate, 2-hydroxyglutarate, pyruvate, glyoxylate, and intermediates of glycolytic shunts. Itaconate taken up by the developing erythron can be converted to itaconyl-coenzyme A (CoA) by the enzyme succinyl-CoA:glutarate-CoA transferase. Propionyl-CoA, propionyl-carnitine, methylmalonic acid, heptadecanoic acid, and nonanoic acid, as well as the aliphatic amino acids threonine, valine, methionine, and isoleucine, are increased, likely due to the impact of endogenous itaconyl-CoA synthesis. We further show that itaconyl-CoA is a competitive inhibitor of the erythroid-specific 5-aminolevulinate synthase (ALAS2), the first and rate-limiting step in heme synthesis. These findings strongly support our hypothesis that the inhibition of heme synthesis observed in chronic inflammation is mediated not only by iron limitation but also by limitation of tetrapyrrole synthesis at the point of ALAS2 catalysis by itaconate. Thus, we propose that macrophage-derived itaconate promotes anemia during an inflammatory response in the erythroid compartment.


Assuntos
Heme , Succinatos , Glicólise , Macrófagos , Succinatos/farmacologia
2.
Microbiologyopen ; 8(4): e00669, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29931811

RESUMO

The intestinal commensal and opportunistic anaerobic pathogen Bacteroides fragilis has an essential requirement for both heme and free iron to support growth in extraintestinal infections. In the absence of free iron, B. fragilis can utilize heme as the sole source of iron. However, the mechanisms to remove iron from heme are not completely understood. In this study, we show that the inner membrane ferrous iron transporter ∆feoAB mutant strain is no longer able to grow with heme as the sole source of iron. Genetic complementation with the feoAB gene operon completely restored growth. Our data indicate that iron is removed from heme in the periplasmic space, and the released iron is transported by the FeoAB system. Interestingly, when B. fragilis utilizes iron from heme, it releases heme-derived porphyrins by a dechelatase activity which is upregulated under low iron conditions. This is supported by the findings showing that formation of heme-derived porphyrins in the ∆feoAB mutant and the parent strain increased 30-fold and fivefold (respectively) under low iron conditions compared to iron replete conditions. Moreover, the btuS1 btuS2 double-mutant strain (lacking the predicted periplasmic, membrane anchored CobN-like proteins) also showed growth defect with heme as the sole source of iron, suggesting that BtuS1 and BtuS2 are involved in heme-iron assimilation. Though the dechelatase mechanism remains uncharacterized, assays performed in bacterial crude extracts show that BtuS1 and BtuS2 affect the regulation of the dechelatase-specific activities in an iron-dependent manner. These findings suggest that the mechanism to extract iron from heme in Bacteroides requires a group of proteins, which spans the periplasmic space to make iron available for cellular functions.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides fragilis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Heme/metabolismo , Ferro/metabolismo , Proteínas de Bactérias/genética , Bacteroides fragilis/genética , Transporte Biológico , Proteínas de Transporte de Cátions/genética
3.
J Biol Chem ; 292(39): 16284-16299, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808058

RESUMO

ATP-binding cassette subfamily B member 10 (Abcb10) is a mitochondrial ATP-binding cassette (ABC) transporter that complexes with mitoferrin1 and ferrochelatase to enhance heme biosynthesis in developing red blood cells. Reductions in Abcb10 levels have been shown to reduce mitoferrin1 protein levels and iron import into mitochondria, resulting in reduced heme biosynthesis. As an ABC transporter, Abcb10 binds and hydrolyzes ATP, but its transported substrate is unknown. Here, we determined that decreases in Abcb10 did not result in protoporphyrin IX accumulation in morphant-treated zebrafish embryos or in differentiated Abcb10-specific shRNA murine Friend erythroleukemia (MEL) cells in which Abcb10 was specifically silenced with shRNA. We also found that the ATPase activity of Abcb10 is necessary for hemoglobinization in MEL cells, suggesting that the substrate transported by Abcb10 is important in mediating increased heme biosynthesis during erythroid development. Inhibition of 5-aminolevulinic acid dehydratase (EC 4.2.1.24) with succinylacetone resulted in both 5-aminolevulinic acid (ALA) accumulation in control and Abcb10-specific shRNA MEL cells, demonstrating that reductions in Abcb10 do not affect ALA export from mitochondria and indicating that Abcb10 does not transport ALA. Abcb10 silencing resulted in an alteration in the heme biosynthesis transcriptional profile due to repression by the transcriptional regulator Bach1, which could be partially rescued by overexpression of Alas2 or Gata1, providing a mechanistic explanation for why Abcb10 shRNA MEL cells exhibit reduced hemoglobinization. In conclusion, our findings rule out that Abcb10 transports ALA and indicate that Abcb10's ATP-hydrolysis activity is critical for hemoglobinization and that the substrate transported by Abcb10 provides a signal that optimizes hemoglobinization.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação Enzimológica da Expressão Gênica , Heme/biossíntese , Proteínas de Peixe-Zebra/metabolismo , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Embrião não Mamífero/enzimologia , Embrião não Mamífero/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Microinjeções , Morfolinos/metabolismo , Mutação , Interferência de RNA , RNA Interferente Pequeno , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
4.
Clin Biochem ; 48(12): 788-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25959086

RESUMO

OBJECTIVE: In mammalian cells the rate-limiting step in heme biosynthesis is the formation of δ-aminolevulinic acid (ALA). The reaction intermediates, porphyrins and iron and the final product, heme can be highly cytotoxic if allowed to accumulate. The importance of maintaining the levels of metabolic intermediates and heme within a narrow range is apparent based on the complex homeostatic system(s) that have developed. Ultimately, determining the enzymatic activity of ALA synthase (ALAS) present in the mitochondria is highly beneficial to confirm the effects of the transcriptional, translational and post-translational events. The aim of this study was to develop a highly sensitive assay for ALAS that could be used on whole tissue or cellular homogenates. DESIGN AND METHODS: A systematic approach was used to optimize steps in formation of ALA by ALAS. Reducing the signal to noise ratio for the assay was achieved by derivatizing the ALA formed into a fluorescent product that could be efficiently separated by ultra performance liquid chromatography (UPLC) from other derivatized primary amines. The stability of ALAS activity in whole tissue homogenate and cellular homogenate was determined after extended storage at -80 °C. CONCLUSIONS: A method for assaying ALAS has been developed that can be used with tissue homogenates or cellular lysates. There is no need to purify mitochondria and radiolabeled substrates are not needed for this assay. General laboratory reagents can be used to prepare the samples. Standard UPLC chromatography will resolve the derivatized ALA peak. Samples of tissue homogenate can be stored for approximately one year without significant loss of enzymatic activity.


Assuntos
5-Aminolevulinato Sintetase/análise , 5-Aminolevulinato Sintetase/metabolismo , Animais , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Corantes Fluorescentes/química , Humanos , Leucemia Eritroblástica Aguda/enzimologia , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL
5.
J Biol Chem ; 283(43): 28926-33, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18480062

RESUMO

One of the most important biological reactions of nitric oxide (nitrogen monoxide, *NO) is its reaction with transition metals, of which iron is the major target. This is confirmed by the ubiquitous formation of EPR-detectable g=2.04 signals in cells, tissues, and animals upon exposure to both exogenous and endogenous *NO. The source of the iron for these dinitrosyliron complexes (DNIC), and its relationship to cellular iron homeostasis, is not clear. Evidence has shown that the chelatable iron pool (CIP) may be at least partially responsible for this iron, but quantitation and kinetic characterization have not been reported. In the murine cell line RAW 264.7, *NO reacts with the CIP similarly to the strong chelator salicylaldehyde isonicotinoyl hydrazone (SIH) in rapidly releasing iron from the iron-calcein complex. SIH pretreatment prevents DNIC formation from *NO, and SIH added during the *NO treatment "freezes" DNIC levels, showing that the complexes are formed from the CIP, and they are stable (resistant to SIH). DNIC formation requires free *NO, because addition of oxyhemoglobin prevents formation from either *NO donor or S-nitrosocysteine, the latter treatment resulting in 100-fold higher intracellular nitrosothiol levels. EPR measurement of the CIP using desferroxamine shows quantitative conversion of CIP into DNIC by *NO. In conclusion, the CIP is rapidly and quantitatively converted to paramagnetic large molecular mass DNIC from exposure to free *NO but not from cellular nitrosothiol. These results have important implications for the antioxidative actions of *NO and its effects on cellular iron homeostasis.


Assuntos
Ferro/química , Óxido Nítrico/metabolismo , Animais , Antioxidantes/química , Linhagem Celular , Quelantes/química , Quelantes/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Hemoglobinas/química , Homeostase , Substâncias Macromoleculares , Camundongos , Microscopia de Fluorescência/métodos , Modelos Químicos , Nitrogênio/química , Compostos de Sulfidrila/química
6.
Proc Natl Acad Sci U S A ; 104(12): 5079-84, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17360334

RESUMO

Porphyria cutanea tarda (PCT), the most common form of porphyria in humans, is due to reduced activity of uroporphyrinogen decarboxylase (URO-D) in the liver. Previous studies have demonstrated that protein levels of URO-D do not change when catalytic activity is reduced, suggesting that an inhibitor of URO-D is generated in hepatocytes. Here, we describe the identification and characterization of an inhibitor of URO-D in liver cytosolic extracts from two murine models of PCT: wild-type mice treated with iron, delta-aminolevulinic acid, and polychlorinated biphenyls; and mice with one null allele of Uro-d and two null alleles of the hemochromatosis gene (Uro-d(+/-), Hfe(-/-)) that develop PCT with no treatments. In both models, we identified an inhibitor of recombinant human URO-D (rhURO-D). The inhibitor was characterized by solid-phase extraction, chromatography, UV-visible spectroscopy, and mass spectroscopy and proved to be uroporphomethene, a compound in which one bridge carbon in the uroporphyrinogen macrocycle is oxidized. We synthesized uroporphomethene by photooxidation of enzymatically generated uroporphyrinogen I or III. Both uroporphomethenes inhibited rhURO-D, but the III isomer porphomethene was a more potent inhibitor. Finally, we detected an inhibitor of rhURO-D in cytosolic extracts of liver biopsy samples of patients with PCT. These studies define the mechanism underlying clinical expression of the PCT phenotype, namely oxidation of uroporphyrinogen to uroporphomethene, a competitive inhibitor of URO-D. The oxidation reaction is iron-dependent.


Assuntos
Porfiria Cutânea Tardia/etiologia , Porfirinas/farmacologia , Uroporfirinogênio Descarboxilase/antagonistas & inibidores , Animais , Cromatografia Líquida de Alta Pressão , Citosol/efeitos dos fármacos , Citosol/enzimologia , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Extratos Hepáticos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Porfiria Cutânea Tardia/induzido quimicamente , Porfirinas/análise , Porfirinas/química , Proteínas Recombinantes/metabolismo , Uroporfirinogênios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA