Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Vaccines (Basel) ; 12(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793769

RESUMO

Patients with multiple myeloma (MM) are a heterogenous, immunocompromised group with increased risk for COVID-19 morbidity and mortality but impaired responses to primary mRNA SARS-CoV-2 vaccination. The effects of booster vaccinations and breakthrough infections (BTIs) on antibody (Ab) levels and cross-protection to variants of concern (VOCs) are, however, not sufficiently evaluated. Therefore, we analysed humoral and cellular vaccine responses in MM patients stratified according to disease stage/treatment into group (1) monoclonal gammopathy of undetermined significance, (2) after stem cell transplant (SCT) without immunotherapy (IT), (3) after SCT with IT, and (4) progressed MM, and in healthy subjects (prospective cohort study). In contrast to SARS-CoV-2 hu-1-specific Ab levels, Omicron-specific Abs and their cross-neutralisation capacity remained low even after three booster doses in a majority of MM patients. In particular, progressed MM patients receiving anti-CD38 mAb and those after SCT with IT were Ab low responders and showed delayed formation of spike-specific B memory cells. However, MM patients with hybrid immunity (i.e., vaccination and breakthrough infection) had improved cross-neutralisation capacity against VOCs, yet in the absence of severe COVID-19 disease. Our results indicate that MM patients require frequent variant-adapted booster vaccinations and/or changes to other vaccine formulations/platforms, which might have similar immunological effects as BTIs.

2.
Mol Ther ; 32(2): 426-439, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38058126

RESUMO

Harnessing the immune system to eradicate tumors requires identification and targeting of tumor antigens, including tumor-specific neoantigens and tumor-associated self-antigens. Tumor-associated antigens are subject to existing immune tolerance, which must be overcome by immunotherapies. Despite many novel immunotherapies reaching clinical trials, inducing self-antigen-specific immune responses remains challenging. Here, we systematically investigate viral-vector-based cancer vaccines encoding a tumor-associated self-antigen (TRP2) for the treatment of established melanomas in preclinical mouse models, alone or in combination with adoptive T cell therapy. We reveal that, unlike foreign antigens, tumor-associated antigens require replication of lymphocytic choriomeningitis virus (LCMV)-based vectors to break tolerance and induce effective antigen-specific CD8+ T cell responses. Immunization with a replicating LCMV vector leads to complete tumor rejection when combined with adoptive TRP2-specific T cell transfer. Importantly, immunization with replicating vectors leads to extended antigen persistence in secondary lymphoid organs, resulting in efficient T cell priming, which renders previously "cold" tumors open to immune infiltration and reprograms the tumor microenvironment to "hot." Our findings have important implications for the design of next-generation immunotherapies targeting solid cancers utilizing viral vectors and adoptive cell transfer.


Assuntos
Vacinas Anticâncer , Neoplasias , Camundongos , Animais , Vírus da Coriomeningite Linfocítica/genética , Linfócitos T CD8-Positivos , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias/genética , Autoantígenos , Microambiente Tumoral
4.
J Autoimmun ; 140: 103118, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37826919

RESUMO

BACKGROUND: The role of autoreactive T cells on the course of Coronavirus disease-19 (COVID-19) remains elusive. Type II pneumocytes represent the main target cells of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autoimmune responses against antigens highly expressed in type II pneumocytes may influence the severity of COVID-19 disease. OBJECTIVE: The aim of this study was to investigate autoreactive T cell responses against self-antigens highly expressed in type II pneumocytes in the blood of COVID-19 patients with severe and non-severe disease. METHODS: We collected blood samples of COVID-19 patients with varying degrees of disease severity and of pre-pandemic controls. T cell stimulation assays with peptide pools of type II pneumocyte antigens were performed in two independent cohorts to analyze the autoimmune T cell responses in patients with non-severe and severe COVID-19 disease. Target cell lysis assays were performed with lung cancer cell lines to determine the extent of cell killing by type II PAA-specific T cells. RESULTS: We identified autoreactive T cell responses against four recently described self-antigens highly expressed in type II pneumocytes, known as surfactant protein A, surfactant protein B, surfactant protein C and napsin A, in the blood of COVID-19 patients. These antigens were termed type II pneumocyte-associated antigens (type II PAAs). We found that patients with non-severe COVID-19 disease showed a significantly higher frequency of type II PAA-specific autoreactive T cells in the blood when compared to severely ill patients. The presence of high frequencies of type II PAA-specific T cells in the blood of non-severe COVID-19 patients was independent of their age. We also found that napsin A-specific T cells from convalescent COVID-19 patients could kill lung cancer cells, demonstrating the functional and cytotoxic role of these T cells. CONCLUSIONS: Our data suggest that autoreactive type II PAA-specific T cells have a protective role in SARS-CoV-2 infections and the presence of high frequencies of these autoreactive T cells indicates effective viral control in COVID-19 patients. Type II-PAA-specific T cells may therefore promote the killing of infected type II pneumocytes and viral clearance.

5.
Cell Rep ; 42(8): 112829, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37490906

RESUMO

In this issue of Cell Reports, Redford et al.1 uncouple the role of CD4+ and CD8+ T cells in controlling anorexia and wasting of muscle and adipose tissue during chronic parasitic infections. These results shed light on the impact of adaptive immune cells on organ catabolism.


Assuntos
Linfócitos T CD8-Positivos , Parasitos , Animais , Humanos , Caquexia , Tecido Adiposo , Linfócitos T CD4-Positivos
6.
Nature ; 617(7962): 684-685, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165218
7.
EMBO J ; 41(12): e109049, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35319107

RESUMO

Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear protein, Atossa (encoded by CG9005), which supports macrophage invasion into the germband of Drosophila by controlling cellular metabolism. First, nuclear Atossa increases mRNA levels of Porthos, a DEAD-box protein, and of two metabolic enzymes, lysine-α-ketoglutarate reductase (LKR/SDH) and NADPH glyoxylate reductase (GR/HPR), thus enhancing mitochondrial bioenergetics. Then Porthos supports ribosome assembly and thereby raises the translational efficiency of a subset of mRNAs, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Mitochondrial respiration measurements, metabolomics, and live imaging indicate that Atossa and Porthos power up OxPhos and energy production to promote the forging of a path into tissues by leading macrophages. Since many crucial physiological responses require increases in mitochondrial energy output, this previously undescribed genetic program may modulate a wide range of cellular behaviors.


Assuntos
Drosophila , Sacaropina Desidrogenases , Animais , Drosophila/metabolismo , Metabolismo Energético , Macrófagos/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Sacaropina Desidrogenases/genética , Sacaropina Desidrogenases/metabolismo
8.
Nat Rev Immunol ; 22(5): 309-321, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608281

RESUMO

Diverse inflammatory diseases, infections and malignancies are associated with wasting syndromes. In many of these conditions, the standards for diagnosis and treatment are lacking due to our limited understanding of the causative molecular mechanisms. Here, we discuss the complex immunological context of cachexia, a systemic catabolic syndrome that depletes both fat and muscle mass with profound consequences for patient prognosis. We highlight the main cytokine and immune cell-driven pathways that have been linked to weight loss and tissue wasting in the context of cancer-associated and infection-associated cachexia. Moreover, we discuss the potential immunometabolic consequences of cachexia on the basis of newly identified pathways and explore the multilayered area of immunometabolic crosstalk both upstream and downstream of tissue catabolism. Collectively, this Review highlights the intricate relationship of the immune system with cachexia in the context of malignant and infectious diseases.


Assuntos
Caquexia , Neoplasias , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/patologia , Citocinas/fisiologia , Humanos , Músculo Esquelético , Neoplasias/metabolismo , Redução de Peso
9.
Nat Commun ; 12(1): 7190, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907165

RESUMO

Interrogation of cellular metabolism with high-throughput screening approaches can unravel contextual biology and identify cancer-specific metabolic vulnerabilities. To systematically study the consequences of distinct metabolic perturbations, we assemble a comprehensive metabolic drug library (CeMM Library of Metabolic Drugs; CLIMET) covering 243 compounds. We, next, characterize it phenotypically in a diverse panel of myeloid leukemia cell lines and primary patient cells. Analysis of the drug response profiles reveals that 77 drugs affect cell viability, with the top effective compounds targeting nucleic acid synthesis, oxidative stress, and the PI3K/mTOR pathway. Clustering of individual drug response profiles stratifies the cell lines into five functional groups, which link to specific molecular and metabolic features. Mechanistic characterization of selective responses to the PI3K inhibitor pictilisib, the fatty acid synthase inhibitor GSK2194069, and the SLC16A1 inhibitor AZD3965, bring forth biomarkers of drug response. Phenotypic screening using CLIMET represents a valuable tool to probe cellular metabolism and identify metabolic dependencies at large.


Assuntos
Leucemia Mieloide/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Ácidos Graxos/biossíntese , Genótipo , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/patologia , Transportadores de Ácidos Monocarboxílicos/genética , Fenótipo , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Pirrolidinas/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/classificação , Simportadores/genética , Análise de Sistemas , Tiofenos/metabolismo , Tiofenos/farmacologia , Triazóis/metabolismo , Triazóis/farmacologia , Células Tumorais Cultivadas
10.
Front Immunol ; 12: 650977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248938

RESUMO

The cyclin-dependent kinase 6 (CDK6) regulates the transition through the G1-phase of the cell cycle, but also acts as a transcriptional regulator. As such CDK6 regulates cell survival or cytokine secretion together with STATs, AP-1 or NF-κB. In the hematopoietic system, CDK6 regulates T cell development and promotes leukemia and lymphoma. CDK4/6 kinase inhibitors are FDA approved for treatment of breast cancer patients and have been reported to enhance T cell-mediated anti-tumor immunity. The involvement of CDK6 in T cell functions remains enigmatic. We here investigated the role of CDK6 in CD8+ T cells, using previously generated CDK6 knockout (Cdk6-/-) and kinase-dead mutant CDK6 (Cdk6K43M) knock-in mice. RNA-seq analysis indicated a role of CDK6 in T cell metabolism and interferon (IFN) signaling. To investigate whether these CDK6 functions are T cell-intrinsic, we generated a T cell-specific CDK6 knockout mouse model (Cdk6fl/fl CD4-Cre). T cell-intrinsic loss of CDK6 enhanced mitochondrial respiration in CD8+ T cells, but did not impact on cytotoxicity and production of the effector cytokines IFN-γ and TNF-α by CD8+ T cells in vitro. Loss of CDK6 in peripheral T cells did not affect tumor surveillance of MC38 tumors in vivo. Similarly, while we observed an impaired induction of early responses to type I IFN in CDK6-deficient CD8+ T cells, we failed to observe any differences in the response to LCMV infection upon T cell-intrinsic loss of CDK6 in vivo. This apparent contradiction might at least partially be explained by the reduced expression of Socs1, a negative regulator of IFN signaling, in CDK6-deficient CD8+ T cells. Therefore, our data are in line with a dual role of CDK6 in IFN signaling; while CDK6 promotes early IFN responses, it is also involved in the induction of a negative feedback loop. These data assign CDK6 a role in the fine-tuning of cytokine responses.


Assuntos
Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Quinase 6 Dependente de Ciclina/imunologia , Citotoxicidade Imunológica/imunologia , Interferons/imunologia , Neoplasias Experimentais/imunologia , Animais , Antivirais/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Humanos , Interferons/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/metabolismo , Transdução de Sinais/imunologia
11.
Front Immunol ; 12: 535039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815354

RESUMO

The BTB zinc finger transcription factor MAZR (also known as PATZ1) controls, partially in synergy with the transcription factor Runx3, the development of CD8 lineage T cells. Here we explored the role of MAZR as well as combined activities of MAZR/Runx3 during cytotoxic T lymphocyte (CTL) and memory CD8+ T cell differentiation. In contrast to the essential role of Runx3 for CTL effector function, the deletion of MAZR had a mild effect on the generation of CTLs in vitro. However, a transcriptome analysis demonstrated that the combined deletion of MAZR and Runx3 resulted in much more widespread downregulation of CTL signature genes compared to single Runx3 deletion, indicating that MAZR partially compensates for loss of Runx3 in CTLs. Moreover, in line with the findings made in vitro, the analysis of CTL responses to LCMV infection revealed that MAZR and Runx3 cooperatively regulate the expression of CD8α, Granzyme B and perforin in vivo. Interestingly, while memory T cell differentiation is severely impaired in Runx3-deficient mice, the deletion of MAZR leads to an enlargement of the long-lived memory subset and also partially restored the differentiation defect caused by loss of Runx3. This indicates distinct functions of MAZR and Runx3 in the generation of memory T cell subsets, which is in contrast to their cooperative roles in CTLs. Together, our study demonstrates complex interplay between MAZR and Runx3 during CTL and memory T cell differentiation, and provides further insight into the molecular mechanisms underlying the establishment of CTL and memory T cell pools.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Memória Imunológica/imunologia , Proteínas de Neoplasias/imunologia , Proteínas Repressoras/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/virologia
12.
Sci Immunol ; 6(57)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664060

RESUMO

CD8+ T cell immunity to SARS-CoV-2 has been implicated in COVID-19 severity and virus control. Here, we identified nonsynonymous mutations in MHC-I-restricted CD8+ T cell epitopes after deep sequencing of 747 SARS-CoV-2 virus isolates. Mutant peptides exhibited diminished or abrogated MHC-I binding in a cell-free in vitro assay. Reduced MHC-I binding of mutant peptides was associated with decreased proliferation, IFN-γ production and cytotoxic activity of CD8+ T cells isolated from HLA-matched COVID-19 patients. Single cell RNA sequencing of ex vivo expanded, tetramer-sorted CD8+ T cells from COVID-19 patients further revealed qualitative differences in the transcriptional response to mutant peptides. Our findings highlight the capacity of SARS-CoV-2 to subvert CD8+ T cell surveillance through point mutations in MHC-I-restricted viral epitopes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19 , Epitopos de Linfócito T , Antígenos HLA-A/imunologia , Imunidade Celular , Mutação , SARS-CoV-2 , Linfócitos T CD8-Positivos/patologia , COVID-19/genética , COVID-19/imunologia , COVID-19/patologia , Proliferação de Células , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interferon gama/imunologia , Peptídeos/genética , Peptídeos/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia
13.
Nat Metab ; 2(12): 1427-1442, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199895

RESUMO

Adipose tissue macrophages (ATMs) display tremendous heterogeneity depending on signals in their local microenvironment and contribute to the pathogenesis of obesity. The phosphoinositide 3-kinase (PI3K) signalling pathway, antagonized by the phosphatase and tensin homologue (PTEN), is important for metabolic responses to obesity. We hypothesized that fluctuations in macrophage-intrinsic PI3K activity via PTEN could alter the trajectory of metabolic disease by driving distinct ATM populations. Using mice harbouring macrophage-specific PTEN deletion or bone marrow chimeras carrying additional PTEN copies, we demonstrate that sustained PI3K activity in macrophages preserves metabolic health in obesity by preventing lipotoxicity. Myeloid PI3K signalling promotes a beneficial ATM population characterized by lipid uptake, catabolism and high expression of the scavenger macrophage receptor with collagenous structure (MARCO). Dual MARCO and myeloid PTEN deficiencies prevent the generation of lipid-buffering ATMs, reversing the beneficial actions of elevated myeloid PI3K activity in metabolic disease. Thus, macrophage-intrinsic PI3K signalling boosts metabolic health by driving ATM programmes associated with MARCO-dependent lipid uptake.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos/genética , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Transplante de Medula Óssea , Diferenciação Celular , Quimera , Teste de Tolerância a Glucose , Lipidômica , Macrófagos/patologia , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Receptores Imunológicos/genética , Transdução de Sinais/genética
14.
Nature ; 583(7815): 296-302, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612232

RESUMO

The mammalian immune system implements a remarkably effective set of mechanisms for fighting pathogens1. Its main components are haematopoietic immune cells, including myeloid cells that control innate immunity, and lymphoid cells that constitute adaptive immunity2. However, immune functions are not unique to haematopoietic cells, and many other cell types display basic mechanisms of pathogen defence3-5. To advance our understanding of immunology outside the haematopoietic system, here we systematically investigate the regulation of immune genes in the three major types of structural cells: epithelium, endothelium and fibroblasts. We characterize these cell types across twelve organs in mice, using cellular phenotyping, transcriptome sequencing, chromatin accessibility profiling and epigenome mapping. This comprehensive dataset revealed complex immune gene activity and regulation in structural cells. The observed patterns were highly organ-specific and seem to modulate the extensive interactions between structural cells and haematopoietic immune cells. Moreover, we identified an epigenetically encoded immune potential in structural cells under tissue homeostasis, which was triggered in response to systemic viral infection. This study highlights the prevalence and organ-specific complexity of immune gene activity in non-haematopoietic structural cells, and it provides a high-resolution, multi-omics atlas of the epigenetic and transcriptional networks that regulate structural cells in the mouse.


Assuntos
Endotélio/imunologia , Células Epiteliais/imunologia , Fibroblastos/imunologia , Regulação da Expressão Gênica/imunologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Especificidade de Órgãos/imunologia , Imunidade Adaptativa , Animais , Cromatina/genética , Cromatina/metabolismo , Endotélio/citologia , Epigênese Genética/imunologia , Epigenoma/genética , Células Epiteliais/citologia , Feminino , Fibroblastos/citologia , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Sistema Imunitário/virologia , Imunidade Inata , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Especificidade de Órgãos/genética , Transcrição Gênica/imunologia , Transcriptoma/genética
15.
Nat Genet ; 52(7): 719-727, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483291

RESUMO

The Mediator complex directs signals from DNA-binding transcription factors to RNA polymerase II (Pol II). Despite this pivotal position, mechanistic understanding of Mediator in human cells remains incomplete. Here we quantified Mediator-controlled Pol II kinetics by coupling rapid subunit degradation with orthogonal experimental readouts. In agreement with a model of condensate-driven transcription initiation, large clusters of hypophosphorylated Pol II rapidly disassembled upon Mediator degradation. This was accompanied by a selective and pronounced disruption of cell-type-specifying transcriptional circuits, whose constituent genes featured exceptionally high rates of Pol II turnover. Notably, the transcriptional output of most other genes was largely unaffected by acute Mediator ablation. Maintenance of transcriptional activity at these genes was linked to an unexpected CDK9-dependent compensatory feedback loop that elevated Pol II pause release rates across the genome. Collectively, our work positions human Mediator as a globally acting coactivator that selectively safeguards the functionality of cell-type-specifying transcriptional networks.


Assuntos
Regulação da Expressão Gênica , Complexo Mediador/fisiologia , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Cromatina/fisiologia , Drosophila , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Complexo Mediador/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo
16.
Cell Rep ; 30(5): 1542-1552.e7, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023468

RESUMO

Mechanistic or mammalian target of rapamycin complex 1 (mTORC1) is an important regulator of effector functions, proliferation, and cellular metabolism in macrophages. The biochemical processes that are controlled by mTORC1 are still being defined. Here, we demonstrate that integrative multiomics in conjunction with a data-driven inverse modeling approach, termed COVRECON, identifies a biochemical node that influences overall metabolic profiles and reactions of mTORC1-dependent macrophage metabolism. Using a combined approach of metabolomics, proteomics, mRNA expression analysis, and enzymatic activity measurements, we demonstrate that Tsc2, a negative regulator of mTORC1 signaling, critically influences the cellular activity of macrophages by regulating the enzyme phosphoglycerate dehydrogenase (Phgdh) in an mTORC1-dependent manner. More generally, while lipopolysaccharide (LPS)-stimulated macrophages repress Phgdh activity, IL-4-stimulated macrophages increase the activity of the enzyme required for the expression of key anti-inflammatory molecules and macrophage proliferation. Thus, we identify Phgdh as a metabolic checkpoint of M2 macrophages.


Assuntos
Polaridade Celular , Genômica , Macrófagos/citologia , Macrófagos/metabolismo , Modelos Biológicos , Fosfoglicerato Desidrogenase/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Interleucina-4/farmacologia , Ácidos Cetoglutáricos/metabolismo , Cinética , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Fosfoglicerato Desidrogenase/genética , Análise de Componente Principal , Serina/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
17.
Nat Commun ; 11(1): 431, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969567

RESUMO

Multinucleated giant cells (MGCs) are implicated in many diseases including schistosomiasis, sarcoidosis and arthritis. MGC generation is energy intensive to enforce membrane fusion and cytoplasmic expansion. Using receptor activator of nuclear factor kappa-Β ligand (RANKL) induced osteoclastogenesis to model MGC formation, here we report RANKL cellular programming requires extracellular arginine. Systemic arginine restriction improves outcome in multiple murine arthritis models and its removal induces preosteoclast metabolic quiescence, associated with impaired tricarboxylic acid (TCA) cycle function and metabolite induction. Effects of arginine deprivation on osteoclastogenesis are independent of mTORC1 activity or global transcriptional and translational inhibition. Arginine scarcity also dampens generation of IL-4 induced MGCs. Strikingly, in extracellular arginine absence, both cell types display flexibility as their formation can be restored with select arginine precursors. These data establish how environmental amino acids control the metabolic fate of polykaryons and suggest metabolic ways to manipulate MGC-associated pathologies and bone remodelling.


Assuntos
Arginina/metabolismo , Células Gigantes/imunologia , Animais , Artrite/genética , Artrite/metabolismo , Artrite/fisiopatologia , Remodelação Óssea , Ciclo do Ácido Cítrico , Feminino , Células Gigantes/citologia , Humanos , Interleucina-4/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese , Ligante RANK/genética , Ligante RANK/metabolismo
18.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31619583

RESUMO

The mechanistic target of rapamycin complex 2 (mTORC2) is a potentially novel and promising anticancer target due to its critical roles in proliferation, apoptosis, and metabolic reprogramming of cancer cells. However, the activity and function of mTORC2 in distinct cells within malignant tissue in vivo is insufficiently explored. Surprisingly, in primary human and mouse colorectal cancer (CRC) samples, mTORC2 signaling could not be detected in tumor cells. In contrast, only macrophages in tumor-adjacent areas showed mTORC2 activity, which was downregulated in stromal macrophages residing within human and mouse tumor tissues. Functionally, inhibition of mTORC2 by specific deletion of Rictor in macrophages stimulated tumorigenesis in a colitis-associated CRC mouse model. This phenotype was driven by a proinflammatory reprogramming of mTORC2-deficient macrophages that promoted colitis via the cytokine SPP1/osteopontin to stimulate tumor growth. In human CRC patients, high SPP1 levels and low mTORC2 activity in tumor-associated macrophages correlated with a worsened clinical prognosis. Treatment of mice with a second-generation mTOR inhibitor that inhibits mTORC2 and mTORC1 exacerbated experimental colorectal tumorigenesis in vivo. In conclusion, mTORC2 activity is confined to macrophages in CRC and limits tumorigenesis. These results suggest activation but not inhibition of mTORC2 as a therapeutic strategy for colitis-associated CRC.


Assuntos
Carcinogênese/imunologia , Colite Ulcerativa/patologia , Neoplasias Colorretais/imunologia , Macrófagos/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colite Ulcerativa/sangue , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colo/citologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Neoplasias Colorretais/prevenção & controle , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Estimativa de Kaplan-Meier , Macrófagos/metabolismo , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Morfolinas/farmacologia , Osteopontina/sangue , Osteopontina/metabolismo , Cultura Primária de Células , Prognóstico , Taxa de Sobrevida
19.
Nat Immunol ; 20(6): 701-710, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110314

RESUMO

Cachexia represents a leading cause of morbidity and mortality in various cancers, chronic inflammation and infections. Understanding of the mechanisms that drive cachexia has remained limited, especially for infection-associated cachexia (IAC). In the present paper we describe a model of reversible cachexia in mice with chronic viral infection and identify an essential role for CD8+ T cells in IAC. Cytokines linked to cancer-associated cachexia did not contribute to IAC. Instead, virus-specific CD8+ T cells caused morphologic and molecular changes in the adipose tissue, which led to depletion of lipid stores. These changes occurred at a time point that preceded the peak of the CD8+ T cell response and required T cell-intrinsic type I interferon signaling and antigen-specific priming. Our results link systemic antiviral immune responses to adipose-tissue remodeling and reveal an underappreciated role of CD8+ T cells in IAC.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Caquexia/etiologia , Viroses/complicações , Viroses/imunologia , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Tecido Adiposo/virologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Caquexia/diagnóstico por imagem , Caquexia/metabolismo , Caquexia/patologia , Doença Crônica , Citocinas/sangue , Citocinas/metabolismo , Feminino , Interferon Tipo I/metabolismo , Metabolismo dos Lipídeos , Lipólise , Ativação Linfocitária/imunologia , Vírus da Coriomeningite Linfocítica , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Transdução de Sinais , Viroses/virologia
20.
Cell Res ; 29(7): 579-591, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31133695

RESUMO

Cancer is a major and still increasing cause of death in humans. Most cancer cells have a fundamentally different metabolic profile from that of normal tissue. This shift away from mitochondrial ATP synthesis via oxidative phosphorylation towards a high rate of glycolysis, termed Warburg effect, has long been recognized as a paradigmatic hallmark of cancer, supporting the increased biosynthetic demands of tumor cells. Here we show that deletion of apoptosis-inducing factor (AIF) in a KrasG12D-driven mouse lung cancer model resulted in a marked survival advantage, with delayed tumor onset and decreased malignant progression. Mechanistically, Aif deletion leads to oxidative phosphorylation (OXPHOS) deficiency and a switch in cellular metabolism towards glycolysis in non-transformed pneumocytes and at early stages of tumor development. Paradoxically, although Aif-deficient cells exhibited a metabolic Warburg profile, this bioenergetic change resulted in a growth disadvantage of KrasG12D-driven as well as Kras wild-type lung cancer cells. Cell-autonomous re-expression of both wild-type and mutant AIF (displaying an intact mitochondrial, but abrogated apoptotic function) in Aif-knockout KrasG12D mice restored OXPHOS and reduced animal survival to the same level as AIF wild-type mice. In patients with non-small cell lung cancer, high AIF expression was associated with poor prognosis. These data show that AIF-regulated mitochondrial respiration and OXPHOS drive the progression of lung cancer.


Assuntos
Fator de Indução de Apoptose/fisiologia , Carcinogênese/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Progressão da Doença , Glicólise , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA