Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32010634

RESUMO

Trichomonas vaginalis is the parasitic protozoan residing in human urogenital tract causing trichomoniasis, which is the leading non-viral sexually transmitted disease. It has cosmopolitan distribution throughout the globe and affects both men and women. Lifecycle of the parasite has been traditionally described as consisting of motile and symptom-causing trophozoites. Chemical and temperature perturbations in trophozoites have been shown to aid conversion to pseudocysts, which is poorly investigated. In the current study, we show the formation of viable cyst-like structures (CLS) in stationary phase of T. vaginalis axenic culture. We used a fluorescent stain called calcofluor white, which specifically binds to chitin and cellulose-containing structures, to score for T. vaginalis CLS. Using flow cytometry, we demonstrated and quantitated the processes of encystation as well as excystation; thus, completing the parasite's lifecycle in vitro without any chemical/temperature alterations. Like cysts from other protozoan parasites such as Entamoeba histolytica and Giardia lamblia, T. vaginalis CLS appeared spherical, immotile, and resistant to osmotic lysis and detergent treatments. Ultrastructure of CLS demonstrated by Transmission Electron Microscopy showed a thick electron-dense deposition along its outer membrane. To probe the physiological role of CLS, we exposed parasites to vaginal pH and observed that trophozoites took this as a cue to convert to CLS. Further, upon co- culturing with cells of cervical origin, CLS rapidly excysted to form trophozoites which abrogated the cervical cell monolayer in a dose-dependent manner. To further corroborate the presence of two distinct forms in T. vaginalis, we performed two-dimensional gel electrophoresis and global, untargeted mass spectrometry to highlight differences in the proteome with trophozoites. Interestingly, CLS remained viable in chlorinated swimming pool water implicating the possibility of its role as environmentally resistant structures involved in non-sexual mode of parasite transmission. Finally, we showed that symptomatic human patient vaginal swabs had both T. vaginalis trophozoites and CLS; thus, highlighting its importance in clinical infections. Overall, our study highlights the plasticity of the pathogen and its rapid adaption when subjected to stressful environmental cues and suggests an important role of CLS in the parasite's life cycle, pathogenesis and transmission.


Assuntos
Cistos/parasitologia , Cistos/ultraestrutura , Estágios do Ciclo de Vida , Trichomonas vaginalis/fisiologia , Trichomonas vaginalis/ultraestrutura , Plasticidade Celular , Entamoeba histolytica/metabolismo , Feminino , Giardia lamblia/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Encistamento de Parasitas/fisiologia , Proteoma/análise , Proteômica , Proteínas de Protozoários/metabolismo , Estresse Fisiológico , Trofozoítos/metabolismo , Trofozoítos/ultraestrutura , Vagina/parasitologia
2.
PLoS Negl Trop Dis ; 12(5): e0006493, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29768419

RESUMO

Trichomonas vaginalis is a causative agent of Trichomoniasis, a leading non-viral sexually transmitted disease worldwide. In the current study, we show Heat shock protein 90 is essential for its growth. Upon genomic analysis of the parasite, it was found to possess seven ORFs which could potentially encode Hsp90 isoforms. We identified a cytosolic Hsp90 homolog, four homologs which can align to truncated cytosolic Hsp90 gene products along with two Grp94 homologs (ER isoform of Hsp90). However, both Grp94 orthologs lacked an ER retention motif. In cancer cells, it is very well established that Hsp90 is secreted and regulates key clients involved in metastases, migration, and invasion. Since Trichomonas Grp94 lacks ER retention motif, we examined the possibility of its secretion. By using cell biology and biochemical approaches we show that the Grp94 isoform of Hsp90 is secreted by the parasite by the classical ER-Golgi pathway. This is the first report of a genome encoded secreted Hsp90 in a clinically important parasitic protozoan.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Protozoários/metabolismo , Tricomoníase/parasitologia , Trichomonas vaginalis/metabolismo , Motivos de Aminoácidos , Citosol/química , Citosol/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Humanos , Transporte Proteico , Proteínas de Protozoários/genética , Trichomonas vaginalis/química , Trichomonas vaginalis/classificação , Trichomonas vaginalis/genética
3.
Sci Rep ; 7: 40213, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091526

RESUMO

Intra-erythrocytic growth of malaria parasite is known to induce redox stress. In addition to haem degradation which generates reactive oxygen species (ROS), the parasite is also thought to efflux redox active homocysteine. To understand the basis underlying accumulation of homocysteine, we have examined the transsulphuration (TS) pathway in the parasite, which is known to convert homocysteine to cysteine in higher eukaryotes. Our bioinformatic analysis revealed absence of key enzymes in the biosynthesis of cysteine namely cystathionine-ß-synthase and cystathionine-γ-lyase in the parasite. Using mass spectrometry, we confirmed the absence of cystathionine, which is formed by enzymatic conversion of homocysteine thereby confirming truncation of TS pathway. We also quantitated levels of glutathione and homocysteine in infected erythrocytes and its spent medium. Our results showed increase in levels of these metabolites intracellularly and in culture supernatants. Our results provide a mechanistic basis for the long-known occurrence of hyperhomocysteinemia in malaria. Most importantly we find that homocysteine induces the transcription factor implicated in gametocytogenesis namely AP2-G and consequently triggers sexual stage conversion. We confirmed this observation both in vitro using Plasmodium falciparum cultures, and in vivo in the mouse model of malaria. Our study implicates homocysteine as a potential physiological trigger of gametocytogenesis.


Assuntos
Cisteína/metabolismo , Homocisteína/metabolismo , Redes e Vias Metabólicas , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Enxofre/metabolismo , Animais , Meios de Cultura/química , Cistationina/análise , Modelos Animais de Doenças , Eritrócitos/parasitologia , Glutationa/análise , Humanos , Malária/parasitologia , Malária/patologia , Espectrometria de Massas , Camundongos , Oxirredução , Fatores de Transcrição/biossíntese , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA