Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Urol Oncol ; 41(11): 459.e9-459.e16, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37863744

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is a metabolic disease, with subtypes exhibiting aberrations in different metabolic pathways. Metabolomics may offer greater sensitivity for revealing disease biology. We investigated the metabolomic profile of RCC using high-resolution magic angle spinning (HRMAS) proton magnetic resonance spectroscopy (1HMRS). METHODS: Surgical tissue samples were obtained from our frozen tissue bank, collected from radical or partial nephrectomy. Specimens were fresh-frozen, then stored at -80 °C until analysis. Tissue HRMAS-1HMRS was performed. A MatLab-based curve fitting program was used to process the spectra to produce relative intensities for 59 spectral regions of interest (ROIs). Comparisons of the metabolomic profiles of various RCC histologies and benign tumors, angiomyolipoma, and oncocytoma, were performed. False discovery rates (FDR) were used from the response screening to account for multiple testing; ROIs with FDR p < 0.05 were considered potential predictors of RCC. Wilcoxon rank sum test was used to compare median 1HMRS relative intensities for those metabolites that may differentiate between RCC and benign tumor. Logistic regression determined odds ratios for risk of malignancy based on the abundance of each metabolite. RESULTS: Thirty-eight RCC (16 clear cell, 11 papillary, 11 chromophobe), 10 oncocytomas, 7 angiomyolipomas, and 13 adjacent normal tissue specimens (matched pairs) were analyzed. Candidate metabolites for predictors of malignancy based on FDR p-values include histidine, phenylalanine, phosphocholine, serine, phosphocreatine, creatine, glycerophosphocholine, valine, glycine, myo-inositol, scyllo-inositol, taurine, glutamine, spermine, acetoacetate, and lactate. Higher levels of spermine, histidine, and phenylalanine at 3.15 to 3.13 parts per million (ppm) were associated with decreased risk of RCC (OR 4 × 10-5, 95% CI 7.42 × 10-8, 0.02), while 2.84 to 2.82 ppm increased the risk of malignant pathology (OR 7158.67, 95% CI 6.3, 8.3 × 106). The specific metabolites characterizing this region remain to be identified. Tumor stage did not affect metabolomic profile of malignant tumors, suggesting that metabolites are dependent on histologic subtype. CONCLUSIONS: HRMAS-1HMRS identified metabolites that may predict RCC. We demonstrated that those in the 3.14 to 3.13 ppm ROI were present in lower levels in RCC, while higher levels of metabolites in the 2.84 to 2.82 ppm ROI were associated with substantially increased risk of RCC. Further research in a larger population is required to validate these findings.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Espectroscopia de Prótons por Ressonância Magnética , Histidina , Espermina , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Renais/patologia , Fenilalanina
2.
NPJ Precis Oncol ; 6(1): 94, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575299

RESUMO

The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.

3.
IEEE Trans Med Imaging ; 41(12): 3981-3999, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099221

RESUMO

Image-based phenotypic drug profiling is receiving increasing attention in drug discovery and precision medicine. Compared to classical end-point measurements quantifying drug response, image-based profiling enables both the quantification of drug response and characterization of disease entities and drug-induced cell-death phenotypes. Here, we aim to quantify image-based drug responses in patient-derived 3D spheroid tumor cell cultures, tackling the challenges of a lack of single-cell-segmentation methods and limited patient-derived material. Therefore, we investigate deep transfer learning with patient-by-patient fine-tuning for cell-viability quantification. We fine-tune a convolutional neural network (pre-trained on ImageNet) with 210 control images specific to a single training cell line and 54 additional screen -specific assay control images. This method of image-based drug profiling is validated on 6 cell lines with known drug sensitivities, and further tested with primary patient-derived samples in a medium-throughput setting. Network outputs at different drug concentrations are used for drug-sensitivity scoring, and dense-layer activations are used in t-distributed stochastic neighbor embeddings of drugs to visualize groups of drugs with similar cell-death phenotypes. Image-based cell-line experiments show strong correlation to metabolic results ( R ≈ 0.7 ) and confirm expected hits, indicating the predictive power of deep learning to identify drug-hit candidates for individual patients. In patient-derived samples, combining drug sensitivity scoring with phenotypic analysis may provide opportunities for complementary combination treatments. Deep transfer learning with patient-by-patient fine-tuning is a promising, segmentation-free image-analysis approach for precision medicine and drug discovery.


Assuntos
Neoplasias , Esferoides Celulares , Humanos , Redes Neurais de Computação , Microscopia de Fluorescência , Aprendizado de Máquina
4.
Cancers (Basel) ; 14(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35159116

RESUMO

The survival rate among children with relapsed tumors remains poor, due to tumor heterogeneity, lack of directly actionable tumor drivers and multidrug resistance. Novel personalized medicine approaches tailored to each tumor are urgently needed to improve cancer treatment. Current pediatric precision oncology platforms, such as the INFORM (INdividualized Therapy FOr Relapsed Malignancies in Childhood) study, reveal that molecular profiling of tumor tissue identifies targets associated with clinical benefit in a subgroup of patients only and should be complemented with functional drug testing. In such an approach, patient-derived tumor cells are exposed to a library of approved oncological drugs in a physiological setting, e.g., in the form of animal avatars injected with patient tumor cells. We used molecularly fully characterized tumor samples from the INFORM study to compare drug screen results of individual patient-derived cell models in functional assays: (i) patient-derived spheroid cultures within a few days after tumor dissociation; (ii) tumor cells reisolated from the corresponding mouse PDX; (iii) corresponding long-term organoid-like cultures and (iv) drug evaluation with the corresponding zebrafish PDX (zPDX) model. Each model had its advantage and complemented the others for drug hit and drug combination selection. Our results provide evidence that in vivo zPDX drug screening is a promising add-on to current functional drug screening in precision medicine platforms.

5.
Pharmacol Res ; 175: 105996, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848323

RESUMO

High throughput screening methods, measuring the sensitivity and resistance of tumor cells to drug treatments have been rapidly evolving. Not only do these screens allow correlating response profiles to tumor genomic features for developing novel predictors of treatment response, but they can also add evidence for therapy decision making in precision oncology. Recent analysis methods developed for either assessing single agents or combination drug efficacies enable quantification of dose-response curves with restricted symmetric fit settings. Here, we introduce iTReX, a user-friendly and interactive Shiny/R application, for both the analysis of mono- and combination therapy responses. The application features an extended version of the drug sensitivity score (DSS) based on the integral of an advanced five-parameter dose-response curve model and a differential DSS for combination therapy profiling. Additionally, iTReX includes modules that visualize drug target interaction networks and support the detection of matches between top therapy hits and the sample omics features to enable the identification of druggable targets and biomarkers. iTReX enables the analysis of various quantitative drug or therapy response readouts (e.g. luminescence, fluorescence microscopy) and multiple treatment strategies (drug treatments, radiation). Using iTReX we validate a cost-effective drug combination screening approach and reveal the application's ability to identify potential sample-specific biomarkers based on drug target interaction networks. The iTReX web application is accessible at https://itrex.kitz-heidelberg.de.


Assuntos
Antineoplásicos/administração & dosagem , Software , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Ensaios de Triagem em Larga Escala , Humanos
6.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903652

RESUMO

The current high mortality of human lung cancer stems largely from the lack of feasible, early disease detection tools. An effective test with serum metabolomics predictive models able to suggest patients harboring disease could expedite triage patient to specialized imaging assessment. Here, using a training-validation-testing-cohort design, we establish our high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS)-based metabolomics predictive models to indicate lung cancer presence and patient survival using serum samples collected prior to their disease diagnoses. Studied serum samples were collected from 79 patients before (within 5.0 y) and at lung cancer diagnosis. Disease predictive models were established by comparing serum metabolomic patterns between our training cohorts: patients with lung cancer at time of diagnosis, and matched healthy controls. These predictive models were then applied to evaluate serum samples of our validation and testing cohorts, all collected from patients before their lung cancer diagnosis. Our study found that the predictive model yielded values for prior-to-detection serum samples to be intermediate between values for patients at time of diagnosis and for healthy controls; these intermediate values significantly differed from both groups, with an F1 score = 0.628 for cancer prediction. Furthermore, values from metabolomics predictive model measured from prior-to-diagnosis sera could significantly predict 5-y survival for patients with localized disease.


Assuntos
Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Espectroscopia de Ressonância Magnética , Metabolômica , Idoso , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/metabolismo , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
7.
Phys Med Biol ; 65(23): 23NT02, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32916667

RESUMO

OBJECTIVE: To implement computed tomography (CT)-based attenuation maps of radiotherapy (RT) positioning hardware and radiofrequency (RF) coils to enable hybrid positron emission tomography/magnetic resonance imaging (PET/MRI)-based RT treatment planning. MATERIALS AND METHODS: The RT positioning hardware consisted of a flat RT table overlay, coil holders for abdominal scans, coil holders for head and neck scans and an MRI compatible hip and leg immobilization device. CT images of each hardware element were acquired on a CT scanner. Based on the CT images, attenuation maps of the devices were created. Validation measurements were performed on a PET/MR scanner using a 68Ge phantom (48 MBq, 10 min scan time). Scans with each device in treatment position were performed. Then, reference scans containing only the phantom were taken. The scans were reconstructed online (at the PET/MRI scanner) and offline (via e7tools on a PC) using identical reconstruction parameters. Average reconstructed activity concentrations of the device and reference scans were compared. RESULTS: The device attenuation maps were successfully implemented. The RT positioning devices caused an average decrease of reconstructed PET activity concentration in the range between -8.3 ± 2.1% (mean ± SD) (head and neck coil holder with coils) to -1.0 ± 0.5% (abdominal coil holder). With attenuation correction taking into account RT hardware, these values were reduced to -2.0 ± 1.2% and -0.6 ± 0.5%, respectively. The results of the offline and online reconstructions were nearly identical, with a difference of up to 0.2%. CONCLUSION: The decrease in reconstructed activity concentration caused by the RT positioning devices is clinically relevant and can successfully be corrected using CT-based attenuation maps. Both the offline and online reconstruction methods are viable options.


Assuntos
Cabeça/efeitos da radiação , Imageamento por Ressonância Magnética/instrumentação , Pescoço/efeitos da radiação , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia Computadorizada por Raios X/métodos , Irradiação Corporal Total/métodos , Cabeça/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Pescoço/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
8.
Sci Rep ; 9(1): 10319, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311965

RESUMO

Low-dose CT has shown promise in detecting early stage lung cancer. However, concerns about the adverse health effects of radiation and high cost prevent its use as a population-wide screening tool. Effective and feasible screening methods to triage suspicious patients to CT are needed. We investigated human lung cancer metabolomics from 93 paired tissue-serum samples with magnetic resonance spectroscopy and identified tissue and serum metabolomic markers that can differentiate cancer types and stages. Most interestingly, we identified serum metabolomic profiles that can predict patient overall survival for all cases (p = 0.0076), and more importantly for Stage I cases alone (n = 58, p = 0.0100), a prediction which is significant for treatment strategies but currently cannot be achieved by any clinical method. Prolonged survival is associated with relative overexpression of glutamine, valine, and glycine, and relative suppression of glutamate and lipids in serum.


Assuntos
Biomarcadores/sangue , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Metabolômica/métodos , Idoso , Feminino , Glutamina/sangue , Glicina/sangue , Humanos , Neoplasias Pulmonares/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sobrevida , Valina/sangue
9.
NMR Biomed ; 32(10): e4038, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30609175

RESUMO

In this article, we review the state of the field of high resolution magic angle spinning MRS (HRMAS MRS)-based cancer metabolomics since its beginning in 2004; discuss the concept of cancer metabolomic fields, where metabolomic profiles measured from histologically benign tissues reflect patient cancer status; and report our HRMAS MRS metabolomic results, which characterize metabolomic fields in prostatectomy-removed cancerous prostates. Three-dimensional mapping of cancer lesions throughout each prostate enabled multiple benign tissue samples per organ to be classified based on distance from and extent of the closest cancer lesion as well as the Gleason score (GS) of the entire prostate. Cross-validated partial least squares-discriminant analysis separations were achieved between cancer and benign tissue, and between cancer tissue from prostates with high (≥4 + 3) and low (≤3 + 4) GS. Metabolomic field effects enabled histologically benign tissue adjacent to cancer to distinguish the GS and extent of the cancer lesion itself. Benign samples close to either low GS cancer or extensive cancer lesions could be distinguished from those far from cancer. Furthermore, a successfully cross-validated multivariate model for three benign tissue groups with varying distances from cancer lesions within one prostate indicates the scale of prostate cancer metabolomic fields. While these findings could, at present, be potentially useful in the prostate cancer clinic for analysis of biopsy or surgical specimens to complement current diagnostics, the confirmation of metabolomic fields should encourage further examination of cancer fields and can also enhance understanding of the metabolomic characteristics of cancer in myriad organ systems. Our results together with the success of HRMAS MRS-based cancer metabolomics presented in our literature review demonstrate the potential of cancer metabolomics to provide supplementary information for cancer diagnosis, staging, and patient prognostication.


Assuntos
Espectroscopia de Ressonância Magnética , Metabolômica , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Idoso , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Análise de Componente Principal , Neoplasias da Próstata/patologia , Curva ROC
10.
IEEE Trans Med Imaging ; 32(3): 485-92, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23047863

RESUMO

A small positron-generating branch in 90-Yttrium ((90)Y) decay enables post-therapy dose assessment in liver cancer radioembolization treatment. The aim of this study was to validate clinical (90)Y positron emission tomography (PET) quantification, focusing on scanner linearity as well as acquisition and reconstruction parameter impact on scanner calibration. Data from three dedicated phantom studies (activity range: 55.2 MBq-2.1 GBq) carried out on a Philips Gemini TF 16 PET/CT scanner were analyzed after reconstruction with up to 361 parameter configurations. For activities above 200 MBq, scanner linearity could be confirmed with relative error margins 4%. An acquisition-time-normalized calibration factor of 1.04 MBq·s/CNTS was determined for the employed scanner. Stable activity convergence was found in hot phantom regions with relative differences in summed image intensities between -3.6% and +2.4%. Absolute differences in background noise artifacts between - 79.9% and + 350% were observed. Quantitative accuracy was dominated by subset size selection in the reconstruction. Using adequate segmentation and optimized acquisition parameters, the average activity recovery error induced by the axial scanner sensitivity profile was reduced to +2.4%±3.4% (mean ± standard deviation). We conclude that post-therapy dose assessment in (90)Y PET can be improved using adapted parameter setups.


Assuntos
Embolização Terapêutica/métodos , Tomografia por Emissão de Pósitrons/métodos , Radiometria/métodos , Radioisótopos de Ítrio/química , Calibragem , Humanos , Modelos Biológicos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/normas , Reprodutibilidade dos Testes , Tórax/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA