Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38757226

RESUMO

BACKGROUND: Lead (Pb) content in lipsticks and potential life-long exposure of which might cause severe effects in consumers are an important concern for public. Thus, studies emphasize that lead exposure has no safe levels. METHODS: From 10 different brands, in total, 25 solid, gloss and creamy lipsticks are deployed from Turkish markets that are also categorized in two different price ranges. In order to evaluate the blood Pb levels in children, the United States Environmental Protection Agency's 'Exposure Uptake Biokinetic Model' is utilized. To assess the health risk of chronic usage both for children and adults, oral daily systemic exposure levels are calculated with the worst-case scenario and are compared with Maximum Allowable Dose Level for lipsticks. For lifetime risk assessment, exposure is assumed to start by age 7, and four different exposure scenarios have been deployed. RESULTS: The mean lead content of lipsticks shows significant statistical differences between the high- and low-priced lipstick groups. Daily level and total risk for lifetime Pb exposure from deployed lipsticks are below the acceptable risk levels but long-worn usage of products with routine monitoring of metal content is crucial for sensitive and unintended exposure groups.

2.
J Appl Toxicol ; 44(4): 609-622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37989595

RESUMO

Alzheimer's disease (AD) is a progressive neurological disorder that affects various cognitive functions, behavior, and personality. AD is thought to be caused by a combination of genetic and environmental factors, including exposure to aluminum (Al). Virgin coconut oil (VCO) may have potential as a natural neuroprotectant against AD. Aim of this study was to determine neuroprotective effects of VCO on Al-induced neurotoxicity in an in vitro AD model. SH-SY5Y cells were initially cultured in normal growth medium and then differentiated by reducing fetal bovine serum content and adding retinoic acid (RA). Later, brain-derived neurotrophic factor (BDNF) was added along with RA. The differentiation process was completed on the seventh day. Study groups (n = 3) were designed as control group, VCO group, Al group, Al-VCO group, Alzheimer model (AD) group, AD + Al-exposed group (AD+Al), AD + VCO applied group (AD + VCO) and AD + Al-exposed + VCO applied group (AD + Al + VCO). Specific markers of AD (hyperphosphorylated Tau protein, amyloid beta 1-40 peptide, and amyloid precursor protein) were measured in all groups. In addition, oxidative stress parameters (total antioxidant capacity, lipid peroxidase, protein carbonyl, and reactive oxygen species) and neurotransmitter-related parameters (dopamine, dopamine transporter acetylcholine, and synuclein alpha levels, acetylcholinesterase activity) were measured comparatively in the study groups. VCO reduced amyloid beta and hyperphosphorylated Tau protein levels in the study groups. In addition, oxidative stress levels decreased, and neurotransmitter parameters improved with VCO. Our study shows that VCO may have potential therapeutic effects in Alzheimer's disease and further experiments are needed to determine its efficacy.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Óleo de Coco/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Alumínio/toxicidade , Peptídeos beta-Amiloides/toxicidade , Acetilcolinesterase/metabolismo , Neurotransmissores
3.
Biol Trace Elem Res ; 193(2): 364-376, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31069715

RESUMO

Metabolic diseases or injuries damage bone structure and self-renewal capacity. Trace elements and hydroxyapatite crystals are important in the development of biomaterials to support the renewal of bone extracellular matrix. In this study, it was assumed that the boron-loaded nanometer-sized hydroxyapatite composite supports the construction of extracellular matrix by controlled boron release in order to prevent its toxic effect. In this context, boron release from nanometer-sized hydroxyapatite was calculated by ICP-MS as in large proportion within 1 h and continuing release was provided at a constant low dose. The effect of the boron-containing nanometer-sized hydroxyapatite composite on the proliferation of SaOS-2 osteoblasts and human bone marrow-derived mesenchymal stem cells was evaluated by WST-1 and compared with the effects of nano-hydroxyapatite and boric acid. Boron increased proliferation of mesenchymal stem cells at high doses and exhibited different effects on osteoblastic cell proliferation. Boron-containing nano-hydroxyapatite composites increased osteogenic differentiation of mesenchymal stem cells by increasing alkaline phosphatase activity, when compared to nano-hydroxyapatite composite and boric acid. The molecular mechanism of effective dose of boron-containing hydroxyapatite has been assessed by transcriptomic analysis and shown to affect genes involved in Wnt, TGF-ß, and response to stress signaling pathways when compared to nano-hydroxyapatite composite and boric acid. Finally, a safe osteoconductive dose range of boron-containing nano-hydroxyapatite composites for local repair of bone injuries and the molecular effect profile in the effective dose should be determined by further studies to validation of the regenerative therapeutic effect window.


Assuntos
Boro/farmacologia , Durapatita/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Boro/química , Boro/farmacocinética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Liberação Controlada de Fármacos , Durapatita/química , Durapatita/farmacocinética , Humanos , Células-Tronco Mesenquimais/metabolismo , Nanocompostos/química , Osteoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA