RESUMO
Miniproteins constitute an excellent basis for the development of structurally demanding functional molecules. The engrailed homeodomain, a three-helix-containing miniprotein, was applied as a scaffold for constructing programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) interaction inhibitors. PD-L1 binders were initially designed using the computer-aided approach and subsequently optimized iteratively. The conformational stability was assessed for each obtained miniprotein using circular dichroism spectroscopy, indicating that numerous mutations could be introduced. The formation of a sizable hydrophobic surface at the inhibitor that fits the molecular target imposed the necessity for the incorporation of additional charged amino acid residues to retain its appropriate solubility. Finally, the miniprotein effectively binding to PD-L1 (KD = 51.4 nM) that inhibits PD-1/PD-L1 interaction in cell-based studies with EC50 = 3.9 µM, was discovered.
Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Engenharia de Proteínas , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Humanos , Ligação Proteica , Modelos Moleculares , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genéticaRESUMO
Although the construction of peptides with well-defined three-dimensional structures and predictable functions, including biological activity, using conformationally constrained ß-amino acids has been shown to be a very successful strategy, their broad application is limited by access to the appropriate building blocks. In particular, trans- and cis-stereoisomers of 2-aminocyclopentanecarboxylic acid (ACPC) are of high interest. The scalable synthesis of all four stereoisomers of Fmoc derivatives of ACPC is presented with NMR-based analysis methods for their enantiomeric purity.
Assuntos
Aminoácidos , Peptídeos , Estereoisomerismo , Peptídeos/química , Aminoácidos/química , Espectroscopia de Ressonância MagnéticaRESUMO
The effects of peptide N- and C-termini on aggregation behavior have been scarcely studied. Herein, we examine (105-115) peptide fragments of transthyretin (TTR) containing various functional groups at both termini and study their impact on the morphology and the secondary structure. We synthesized TTR(105-115) peptides functionalized with α-amino (H-), N-acetyl-α-amino (Ac-) or N,N-dimethyl-α-amino (DiMe-) groups at the N-terminus, and with amide (-NH2) or carboxyl (-OH) functions at the C-terminus. We also investigated quasi-racemic mixtures by mixing the L-enantiomers with the D-enantiomer capped by H- and -NH2 groups. We observed that fibril formation is promoted by the sufficient number of hydrogen bonds at peptides' termini. Moreover, the final morphology of the aggregates can be controlled by the functional groups at the N-terminus. Remarkably, all quasi-racemic mixtures resulted in the robust formation of fibrils. Overall, this work illustrates how modifications of peptide termini may help to engineer supramolecular aggregates with a predicted morphology.
Assuntos
Amiloide , Peptídeos , Peptídeos/química , Amiloide/química , Fragmentos de Peptídeos/química , Estrutura Secundária de ProteínaRESUMO
Recent advances in immuno-oncology have opened up new and impressive treatment options for cancer. Notwithstanding, overcoming the limitations of the current FDA-approved therapies with monoclonal antibodies (mAbs) that block the PD-1/PD-L1 pathway continues to lead to the testing of multiple approaches and optimizations. Recently, a series of macrocyclic peptides have been developed that exhibit binding strengths to PD-L1 ranging from sub-micromolar to micromolar. In this study, we present the most potent non-antibody-based PD-1/PD-L1 interaction inhibitor reported to date. The structural and biological characterization of this macrocyclic PD-L1 targeting peptide provides the rationale for inhibition of both PD-1/PD-L1 and CD80/PD-L1 complexes. The IC50 and EC50 values obtained in PD-L1 binding assays indicate that the pAC65 peptide has potency equivalent to the current FDA-approved mAbs and may have similar activity to the BMS986189 peptide, which entered the clinical trial and has favorable safety and pharmacokinetic data. The data presented here delineate the generation of similar peptides with improved biological activities and applications not only in the field of cancer immunotherapy but also in other disorders related to the immune system.
Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Humanos , Anticorpos Monoclonais/farmacologia , Inibidores de Checkpoint Imunológico , Peptídeos/farmacologiaRESUMO
The entry of the SARS-CoV-2 virus into a human host cell begins with the interaction between the viral spike protein (S protein) and human angiotensin-converting enzyme 2 (hACE2). Therefore, a possible strategy for the treatment of this infection is based on inhibiting the interaction of the two abovementioned proteins. Compounds that bind to the SARS-CoV-2 S protein at the interface with the alpha-1/alpha-2 helices of ACE2 PD Subdomain I are of particular interest. We present a stepwise optimisation of helical peptide foldamers containing trans-2-aminocylopentanecarboxylic acid residues as the folding-inducing unit. Four rounds of optimisation led to the discovery of an 18-amino-acid peptide with high affinity for the SARS-CoV-2 S protein (Kd = 650 nM) that inhibits this protein-protein interaction with IC50 = 1.3 µM. Circular dichroism and nuclear magnetic resonance studies indicated the helical conformation of this peptide in solution.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Peptídeos/farmacologiaRESUMO
Catechols have been reported to be potent covalent inhibitors of ureases, and they exhibit activity by modifying cysteine residues at the entrance to enzymatic active sites. Following these principles, we designed and synthesized novel catecholic derivatives that contained carboxylate and phosphonic/phosphinic functionalities and assumed expanded specific interactions. When studying the chemical stability of the molecules, we found that their intrinsic acidity catalyzes spontaneous esterification/hydrolysis reactions in methanol or water solutions, respectively. Regarding biological activity, the most promising compound, 2-(3,4-dihydroxyphenyl)-3-phosphonopropionic acid (15), exhibited significant anti-urease potential (Ki = 2.36 µM, Sporosarcinia pasteurii urease), which was reflected in the antiureolytic effect in live Helicobacter pylori cells at a submicromolar concentration (IC50 = 0.75 µM). As illustrated by molecular modeling, this compound was bound in the active site of urease through a set of concerted electrostatic and hydrogen bond interactions. The antiureolytic activity of catecholic phosphonic acids could be specific because these compounds were chemically inert and not cytotoxic to eukaryotic cells.
Assuntos
Helicobacter pylori , Ácidos Fosfínicos/farmacologia , Urease , Modelos Moleculares , Catecóis/farmacologia , Catecóis/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/químicaRESUMO
In this paper, we show that a hierarchical approach for the construction of nanofibrils based on α,ß-peptide foldamers is a rational method for the design of novel self-assembled nanomaterials based on peptides. Incorporation of a trans-(1S,2S)-2-aminocyclopentanecarboxylic acid residue into the outer positions of the model coiled-coil peptide led to the formation of helical foldamers, which was determined by circular dichroism (CD) and vibrational spectroscopy. The oligomerization state of the obtained peptides in water was established by analytical ultracentrifugation (AUC). The thioflavin T assay and Congo red methods showed that the obtained α,ß-peptides possess a strong tendency to aggregate, leading to the formation of self-assembled nanostructures, which were assessed by microscopic techniques. The location of the ß-amino acid in the heptad repeat of the coiled-coil structure proved to have an influence on the secondary structure of the obtained peptides and on the morphology of the self-assembled nanostructures.
Assuntos
Nanoestruturas , Peptídeos , Sequência de Aminoácidos , Modelos Moleculares , Peptídeos/química , Estrutura Secundária de Proteína , Dicroísmo CircularRESUMO
Urease, an enzyme that catalyzes the hydrolysis of urea, is a virulence factor of various pathogenic bacteria. In particular, Helicobacter pylori, that colonizes the digestive tract and Proteus spp., that can infect the urinary tract, are related to urease activity. Therefore, urease inhibitors are considered as potential therapeutics against these infections. This review describes current knowledge of the structures, activity, and biological importance of bacterial ureases. Moreover, the structure-based design of several classes of bacterial urease inhibitors is presented and discussed. Phosphinic and phosphonic acids were applied as transition-state analogues, while Michael acceptors and ebselen derivatives were applied as covalent binders of cysteine residue. This review incorporates bacterial urease inhibitors from literature published between 2008 and 2021.
Assuntos
Helicobacter pylori , Urease , Inibidores Enzimáticos/farmacologia , Ureia/farmacologia , Urease/químicaRESUMO
The ß-hairpin is a structural element of native proteins, but it is also a useful artificial scaffold for finding lead compounds to convert into peptidomimetics or non-peptide structures for drug discovery. Since linear peptides are synthetically more easily accessible than cyclic ones, but are structurally less well-defined, we propose XWXWXpPXK(/R)X(R) as an acyclic but still rigid ß-hairpin scaffold that is robust enough to accommodate different types of side chains, regardless of the secondary-structure propensity of the X residues. The high conformational stability of the scaffold results from tight contacts between cross-strand cationic and aromatic side chains, combined with the strong tendency of the d-Pro-l-Pro dipeptide to induce a type II' ß-turn. To demonstrate the robustness of the scaffold, we elucidated the NMR structures and performed molecular dynamics (MD) simulations of a series of peptides displaying mainly non-ß-branched, poorly ß-sheet-prone residues at the X positions. Both the NMR and MD data confirm that our acyclic ß-hairpin scaffold is highly versatile as regards the amino-acid composition of the ß-sheet face opposite to the cationic-aromatic one.
Assuntos
Aminoácidos/química , Peptídeos/química , Modelos Moleculares , Conformação Proteica em Folha betaRESUMO
Amyloid fibrils are peptide or protein aggregates possessing a cross-ß-sheet structure. They possess intrinsic fluorescence property, which is still not fully understood. Herein, we compare structural and optical properties of fibrils formed from L- and D-enantiomers of the (105-115) fragment of transthyretin (TTR) and from their racemic mixture. Our results show that autofluorescence of fibrils obtained from enantiomers differs from that of fibrils from the racemic mixture. In order to elucidate the origin of observed differences, we analyzed the structure and morphology of fibrils and showed how variations in ß-sheet organization influence optical properties of fibrils. We clarified the contribution of aromatic rings and the amyloid backbone to the final blue-green emission of fibrils. This work demonstrates how enantiomeric composition of amino acids allows us to modulate the self-assembly and final morphology of well-defined fibrillar bionanostructures with optical properties controlled by supramolecular organization.
Assuntos
Amiloide , Peptídeos , Sequência de Aminoácidos , Conformação Proteica em Folha beta , EstereoisomerismoRESUMO
The construction of ß-amino acid-containing peptides that fold to tertiary structures in solution remains challenging. Two model miniproteins, namely, Trp-cage and FSD, were scanned using a constrained ß-amino acid in order to evaluate its impact on the folding process. Relationships between forces stabilizing the miniprotein structure and conformational stability of analogues were found. The possibility of a significant increase of the conformational stability of the studied miniproteins by substitution with the ß-amino acid at the terminus of a helix is shown. On the basis of these results, ß-amino acid containing-peptide analogs with helical fragments substantially altered by the incorporation of several constrained ß-amino acids were designed, synthesized and evaluated with respect to their structure and stability. The smallest known ß-amino acid-containing peptide with a well-defined tertiary structure is described.
Assuntos
PeptídeosRESUMO
Numerous beta-amino acid containing peptides forming secondary structures have been already described, however the design of higher-order structures remains poorly explored. The methodology allowing construction of sequence patterns containing few rigid secondary element was proposed and experimentally validated. On the basis of 9/10/9/12-helix containing cis-2-aminocyclopentanecarboxylic acid (cis-ACPC) residues arranged in an ααßß sequence pattern, a conformationally stable helix-turn-helix structure was designed. The connection between two helices was also constructed using cis-ACPC residues. Five examples of designed peptides were obtained and analyzed using circular dichroism and nuclear magnetic resonance spectroscopy, which confirmed the assumed way of folding. The NMR structure was calculated for the peptide with the highest number of non-sequential contacts.
Assuntos
Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Cicloleucina/química , Sequências Hélice-Volta-Hélice , Isomerismo , Ressonância Magnética Nuclear BiomolecularRESUMO
The rational design of novel self-assembled nanomaterials based on peptides remains a great challenge in modern chemistry. A hierarchical approach for the construction of nanofibrils based on α,ß-peptide foldamers is proposed. The incorporation of a helix-promoting trans-(1S,2S)-2-aminocyclopentanecarboxylic acid residue in the outer positions of the model coiled-coil peptide led to its increased conformational stability, which was established consistently by the results of CD, NMR and FT-IR spectroscopy. The designed oligomerization state in the solution of the studied peptides was confirmed using analytical ultracentrifugation. Moreover, the cyclopentane side chain allowed additional interactions between coiled-coil-like structures to direct the self-assembly process towards the formation of well-defined nanofibrils, as observed using AFM and TEM techniques.
Assuntos
Peptídeos , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , UltracentrifugaçãoRESUMO
A 'foldamerization' strategy for the discovery of biologically active peptide is evaluated using as an example the peptides that inhibit the p53-MDM2/X interactions. Application of a peptide scan with two constrained ß-residue of trans and cis stereochemistry indicated a substitution pattern that leads to active molecules with enhanced conformational stability and high resistance to proteolysis. This procedure led to the discovery of a peptide that showed subnanomolar inhibition of the p53-MDM2 interaction (Ki = 0.4 nM) with resistance to proteolysis enhanced by ca. two orders of magnitude. Crystallographic analysis and molecular modelling allowed for understanding of these peptide-protein interactions at the molecular level.
Assuntos
Cicloleucina/química , Oligopeptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Mutação , Oligopeptídeos/química , Oligopeptídeos/genética , Conformação ProteicaRESUMO
The interaction between menin and mixed lineage leukemia (MLL) was identified as an interesting target for treating some cancers including acute leukemia. On the basis of the known crystal structure of the MBM1-menin complex (MBM - menin binding motif), several cyclic peptides were designed. Elaboration of the effective cyclization strategy using a metathesis reaction allowed for a successfully large number of derivatives to be obtained. Subsequent optimization of the loop size, as well as N-terminal, central and C-terminal parts of the studied peptides resulted in structures exhibiting low nanomolar activities. A crystal structure of an inhibitor-menin complex revealed a compact conformation of the ligand molecule, which is stabilized not only by the introduction of a covalent linker but also three intramolecular hydrogen bonds. The inhibitor adopts a figure eight-like conformation, which perfectly fits the cleft of menin. We demonstrated that the development of compact, miniprotein-like structures is a highly effective approach for inhibition of protein-protein interactions.
Assuntos
Proteína de Leucina Linfoide-Mieloide/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Motivos de Aminoácidos , Humanos , Ligantes , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/químicaRESUMO
Targeted covalent inhibitors of urease were developed on the basis of the catechol structure. Forty amide and ester derivatives of 3,4-dihydroxyphenylacetic acid, caffeic acid, ferulic acid and gallic acid were obtained and screened against Sporosarcinia pasteurii urease. The most active compound, namely propargyl ester of 3,4-dihydroxyphenylacetic acid exhibited IC50â¯=â¯518â¯nM andkinact/Kiâ¯=â¯1379â¯M-1â¯s-1. Inhibitory activity of this compound was better and toxicity lower than those obtained for the starting compound - catechol. The molecular modelling studies revealed a mode of binding consistent with structure-activity relationships.
Assuntos
Antibacterianos/farmacologia , Catecóis/farmacologia , Sporosarcina/enzimologia , Urease/antagonistas & inibidores , Antibacterianos/química , Catecóis/química , Inibidores Enzimáticos/química , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
Bisphosphonic acids, which are structural analogs of pyrophosphate, constitute a class of compounds with very high potential for the construction of effective inhibitors of enzymes operating on oligo- and polyphosphates. The bisphosphonate-based methodology was applied for the discovery of inhibitors of two families of polyphosphate kinases (PPK1 and PPK2). Screening of thirty-two structurally diverse bisphosphonic acids and related compounds revealed several micromolar inhibitors of both enzymes. Importantly, selectivity of bisphosphonates could be achieved by application of the appropriate side chain.
Assuntos
Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Nucleotídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Polifosfatos/metabolismoRESUMO
The conjugated system of cinnamic acid, α-substituted with a phosphonoalkyl residue, was previously validated as a scaffold that provided one of the most potent organophosphorus inhibitors of bacterial urease. Following the idea of using Morita-Baylis-Hillman adducts to introduce the terminal phosphonic side chain functionality to the α,ß-unsaturated system, we currently report the synthesis and activity of an extended series of compounds. Cinnamates modified with 3-phosphonopropyl and 4-phosphonobutyl side chains were obtained in a convenient two-step procedure, which involved Pd-mediated transformations of the Morita-Baylis-Hillman bromides as the key substrates. The introduction of a terminal alkenyl fragment, which was achieved by Stille coupling with stannanes, was followed by a tandem C-P bond formation/oxidation process. A submicromolar ligand of Sporosarcina pasteurii urease (Kiâ¯=â¯0.509⯵M) was identified among the active molecules. In addition, inhibitors of Proteus mirabilis urease affected bacterial growth at the micromolar level. Based on the structure-activity relationship and the mechanism of inhibition, we suggest a nontypical mixed mode of action for the slow binding compounds. We presume that the molecular distance between the phosphonic group and the backbone double bond allows a dual activity: complexation of the acidic group with nickel ions and Michael addition of a cysteine forming the active site lid.
Assuntos
Cinamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Fosforosos/farmacologia , Proteus mirabilis/efeitos dos fármacos , Sporosarcina/efeitos dos fármacos , Urease/antagonistas & inibidores , Cinamatos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ácidos Fosforosos/síntese química , Ácidos Fosforosos/química , Proteus mirabilis/enzimologia , Proteus mirabilis/crescimento & desenvolvimento , Sporosarcina/enzimologia , Sporosarcina/crescimento & desenvolvimento , Relação Estrutura-Atividade , Urease/metabolismoRESUMO
De novo designed helix-loop-helix peptide foldamers containing cis-2-aminocyclopentanecarboxylic acid residues were evaluated for their conformational stability and possible use in enzyme mimetic development. The correlation between hydrogen bond network size and conformational stability was demonstrated through CD and NMR spectroscopies. Molecules incorporating a Cys/His/Glu triad exhibited enzyme-like hydrolytic activity.
Assuntos
Materiais Biomiméticos/química , Peptídeos/química , Sequência de Aminoácidos , Materiais Biomiméticos/síntese química , Catálise , Sequências Hélice-Alça-Hélice , Hidrolases/química , Hidrólise , Cinética , Peptídeos/síntese química , Engenharia de Proteínas , Desdobramento de ProteínaRESUMO
Blockade of the immunoinhibitory PD-1/PD-L1 pathway using monoclonal antibodies has shown impressive results with durable clinical antitumor responses. Anti-PD-1 and anti-PD-L1 antibodies have now been approved for the treatment of a number of tumor types, whereas the development of small molecules targeting immune checkpoints lags far behind. We characterized two classes of macrocyclic-peptide inhibitors directed at the PD-1/PD-L1 pathway. We show that these macrocyclic compounds act by directly binding to PD-L1 and that they are capable of antagonizing PD-L1 signaling and, similarly to antibodies, can restore the function of T-cells. We also provide the crystal structures of two of these small-molecule inhibitors bound to PD-L1. The structures provide a rationale for the checkpoint inhibition by these small molecules, and a description of their small molecule/PD-L1 interfaces provides a blueprint for the design of small-molecule inhibitors of the PD-1/PD-L1 pathway.