Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
PLoS Genet ; 20(5): e1011290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805544

RESUMO

Li-Fraumeni syndrome is caused by inherited TP53 tumor suppressor gene mutations. MicroRNA miR-34a is a p53 target and modifier gene. Interestingly, miR-34 triple-null mice exhibit normal p53 responses and no overt cancer development, but the lack of miR-34 promotes tumorigenesis in cancer-susceptible backgrounds. miR-34 genes are highly conserved and syntenic between zebrafish and humans. Zebrafish miR-34a and miR-34b/c have similar expression timing in development, but miR-34a is more abundant. DNA damage by camptothecin led to p53-dependent induction of miR-34 genes, while miR-34a mutants were adult-viable and had normal DNA damage-induced apoptosis. Nevertheless, miR-34a-/- compound mutants with a gain-of-function tp53R217H/ R217H or tp53-/- mutants were more cancer-prone than tp53 mutants alone, confirming the tumor-suppressive function of miR-34a. Through transcriptomic comparisons at 28 hours post-fertilization (hpf), we characterized DNA damage-induced transcription, and at 8, 28 and 72 hpf we determined potential miR-34a-regulated genes. At 72 hpf, loss of miR-34a enhanced erythrocyte levels and up-regulated myb-positive hematopoietic stem cells. Overexpression of miR-34a suppressed its reporter mRNA, but not p53 target induction, and sensitized injected embryos to camptothecin but not to γ-irradiation.


Assuntos
Dano ao DNA , Hematopoese , MicroRNAs , Proteína Supressora de Tumor p53 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Camundongos , Apoptose/genética , Camptotecina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores de Tumor , Hematopoese/genética , Síndrome de Li-Fraumeni/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Adv Sci (Weinh) ; 10(26): e2302611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400371

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare disease involving cystic lung destruction by invasive LAM cells. These cells harbor loss-of-function mutations in TSC2, conferring hyperactive mTORC1 signaling. Here, tissue engineering tools are employed to model LAM and identify new therapeutic candidates. Biomimetic hydrogel culture of LAM cells is found to recapitulate the molecular and phenotypic characteristics of human disease more faithfully than culture on plastic. A 3D drug screen is conducted, identifying histone deacetylase (HDAC) inhibitors as anti-invasive agents that are also selectively cytotoxic toward TSC2-/- cells. The anti-invasive effects of HDAC inhibitors are independent of genotype, while selective cell death is mTORC1-dependent and mediated by apoptosis. Genotype-selective cytotoxicity is seen exclusively in hydrogel culture due to potentiated differential mTORC1 signaling, a feature that is abrogated in cell culture on plastic. Importantly, HDAC inhibitors block invasion and selectively eradicate LAM cells in vivo in zebrafish xenografts. These findings demonstrate that tissue-engineered disease modeling exposes a physiologically relevant therapeutic vulnerability that would be otherwise missed by conventional culture on plastic. This work substantiates HDAC inhibitors as possible therapeutic candidates for the treatment of patients with LAM and requires further study.


Assuntos
Neoplasias Pulmonares , Linfangioleiomiomatose , Animais , Humanos , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Neoplasias Pulmonares/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Engenharia Tecidual , Peixe-Zebra , Alvo Mecanístico do Complexo 1 de Rapamicina
3.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183823

RESUMO

While MYCN expression is an important contributing factor to heterogeneity in the natural history of neuroblastoma (NBL), a mechanistic understanding of this often mutationally quiet tumor has remained elusive. In this issue of the JCI, Weichert-Leahey and authors focused on the adrenergic and mesenchymal core regulatory circuitries (CRC) as NBL transcriptional programs. The authors previously showed that overexpression of LIM-domain-only 1 (LMO1), a transcriptional coregulator, synergizes with MYCN to accelerate tumor formation and metastasis in an NBL-zebrafish model. They now demonstrate experimentally, using genome-edited zebrafish, that a polymorphism in the human rs2168101 locus of the LMO1 gene determines which CRC is active in a tumor. In some cases, LMO3 compensated for LMO1 loss and drove the adrenergic CRC in MYCN-positive NBL. This study exemplifies the value of evolutionary relationships and zebrafish models in the investigation of human disease and reveals pathways of NBL development that may affect prevention or intervention strategies.


Assuntos
Neuroblastoma , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Adrenérgicos , Biologia
4.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048053

RESUMO

Hyperactive sphingosine 1-phosphate (S1P) signaling is associated with a poor prognosis of triple-negative breast cancer (TNBC). Despite recent evidence that links the S1P receptor 1 (S1P1) to TNBC cell survival, its role in TNBC invasion and the underlying mechanisms remain elusive. Combining analyses of human TNBC cells with zebrafish xenografts, we found that phosphorylation of S1P receptor 1 (S1P1) at threonine 236 (T236) is critical for TNBC dissemination. Compared to luminal breast cancer cells, TNBC cells exhibit a significant increase of phospho-S1P1 T236 but not the total S1P1 levels. Misexpression of phosphorylation-defective S1P1 T236A (alanine) decreases TNBC cell migration in vitro and disease invasion in zebrafish xenografts. Pharmacologic disruption of S1P1 T236 phosphorylation, using either a pan-AKT inhibitor (MK2206) or an S1P1 functional antagonist (FTY720, an FDA-approved drug for treating multiple sclerosis), suppresses TNBC cell migration in vitro and tumor invasion in vivo. Finally, we show that human TNBC cells with AKT activation and elevated phospho-S1P1 T236 are sensitive to FTY720-induced cytotoxic effects. These findings indicate that the AKT-enhanced phosphorylation of S1P1 T236 mediates much of the TNBC invasiveness, providing a potential biomarker to select TNBC patients for the clinical application of FTY720.


Assuntos
Cloridrato de Fingolimode , Receptores de Esfingosina-1-Fosfato , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Cloridrato de Fingolimode/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Treonina , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Peixe-Zebra/metabolismo
6.
Br J Haematol ; 202(5): 960-970, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35245395

RESUMO

KIT, a type III tyrosine kinase receptor, plays a crucial role in haematopoietic development. The KIT receptor forms a dimer after ligand binding; this activates tyrosine kinase activity leading to downstream signal transduction. The D816V KIT mutation is extensively implicated in haematological malignancies, including mastocytosis and leukaemia. KIT D816V is constitutively active, but the molecular nuances that lead to constitutive tyrosine kinase activity are unclear. For the first time, we present experimental evidence that the KIT D816V mutant does not dimerize like KIT wild type. We further show evidence of decreased stabilization of the tyrosine kinase domain in the KIT D816V mutant, a phenomenon that might contribute to its constitutive activity. Since the mechanism of KIT D816V activation varies from that of the wild type, we explored downstream signal transduction events and found that even though KIT D816V targets similar signalling moieties, the signalling is amplified in the mutant compared to stem cell factor-activated wild type receptor. Uniquely, KIT D816V induces infection-related pathways and the spliceosome pathway, providing alternate options for selective as well as combinatorial therapeutic targeting.


Assuntos
Mastocitose , Humanos , Dimerização , Mastocitose/genética , Mastocitose/metabolismo , Transdução de Sinais/genética , Fosforilação , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo
7.
Can J Physiol Pharmacol ; 100(11): 1065-1076, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985040

RESUMO

Despite numerous therapeutic options, multidrug resistance (MDR) remains an obstacle to successful breast cancer therapy. Jadomycin B, a natural product derived from Streptomyces venezuelae ISP5230, maintains cytotoxicity in MDR human breast cancer cells. Our objectives were to evaluate the pharmacokinetics, toxicity, anti-tumoral, and anti-metastatic effects of jadomycin B in zebrafish larvae and mice. In a zebrafish larval xenograft model, jadomycin B significantly reduced the proliferation of human MDA-MB-231 cells at or below its maximum tolerated dose (40 µm). In female Balb/C mice, a single intraperitoneal dose (6 mg/kg) was rapidly absorbed with a maximum serum concentration of 3.4 ± 0.27 µm. Jadomycin B concentrations declined biphasically with an elimination half-life of 1.7 ± 0.058 h. In the 4T1 mouse mammary carcinoma model, jadomycin B (12 mg/kg every 12 h from day 6 to 15 after tumor cell injection) decreased primary tumor volume compared to vehicle control. Jadomycin B-treated mice did not exhibit weight loss, nor significant increases in biomarkers of impaired hepatic (alanine aminotransferase) and renal (creatinine) function. In conclusion, jadomycin B demonstrated a good safety profile and provided partial anti-tumoral effects, warranting further dose-escalation safety and efficacy studies in MDR breast cancer models.


Assuntos
Neoplasias da Mama , Peixe-Zebra , Humanos , Feminino , Animais , Camundongos , Projetos Piloto , Xenoenxertos
8.
Front Cell Dev Biol ; 10: 955658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923854

RESUMO

Zebrafish offer an excellent tool for studying the vertebrate hematopoietic system thanks to a highly conserved and rapidly developing hematopoietic program, genetic amenability, optical transparency, and experimental accessibility. Zebrafish studies have contributed to our understanding of hematopoiesis, a complex process regulated by signaling cues, inflammation being crucial among them. Hematopoietic stem cells (HSCs) are multipotent cells producing all the functional blood cells, including immune cells. HSCs respond to inflammation during infection and malignancy by proliferating and producing the blood cells in demand for a specific scenario. We first focus on how inflammation plays a crucial part in steady-state HSC development and describe the critical role of the inflammasome complex in regulating HSC expansion and balanced lineage production. Next, we review zebrafish studies of inflammatory innate immune mechanisms focusing on interferon signaling and the downstream JAK-STAT pathway. We also highlight insights gained from zebrafish models harbouring genetic perturbations in the role of inflammation in hematopoietic disorders such as bone marrow failure, myelodysplastic syndrome, and myeloid leukemia. Indeed, inflammation has been recently identified as a potential driver of clonal hematopoiesis and leukemogenesis, where cells acquire somatic mutations that provide a proliferative advantage in the presence of inflammation. Important insights in this area come from mutant zebrafish studies showing that hematopoietic differentiation can be compromised by epigenetic dysregulation and the aberrant induction of signaling pathways.

9.
Cancers (Basel) ; 14(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35740650

RESUMO

Oral metronomic topotecan represents a novel approach to chemotherapy delivery which, in preclinical models, may work synergistically with pazopanib in targeting angiogenesis. A phase I and pharmacokinetic (PK) study of this combination was performed in children with relapsed/refractory solid tumors. Oral topotecan and pazopanib were each administered daily without interruption in 28-day cycles at five dose levels (0.12 to 0.3 mg/m2 topotecan and 125 to 160 mg/m2 pazopanib powder for oral suspension (PfOS)), with dose escalation in accordance with the rolling-six design. PK studies were performed on day 1 and at steady state. Thirty patients were enrolled, with 26 evaluable for dose-limiting toxicity (DLT), with median age 12 years (3-20). Toxicities were generally mild; the most common grade 3/4 adverse events related to protocol therapy were neutropenia (18%), thrombocytopenia (11%), lymphopenia (11%), AST elevation (11%), and lipase elevation (11%). Only two cycle 1 DLTs were observed on study, both at the 0.3/160 mg/m2 dose level comprising persistent grade 3 thrombocytopenia and grade 3 ALT elevation. No AEs experienced beyond cycle 1 required treatment discontinuation. The best response was stable disease in 10/25 patients (40%) for a median duration of 6.4 (1.7-45.1) months. The combination of oral metronomic topotecan and pazopanib is safe and tolerable in pediatric patients with solid tumors, with a recommended phase 2 dose of 0.22 mg/m2 topotecan and 160 mg/m2 pazopanib. No objective responses were observed in this heavily pre-treated patient population, although 40% did achieve stable disease for a median of 6 months. While this combination is likely of limited benefit for relapsed disease, it may play a role in the maintenance setting.

10.
Sci Rep ; 12(1): 1559, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091583

RESUMO

Radiotherapy (RT) is an effective cancer treatment modality, but standard RT often causes collateral damage to nearby healthy tissues. To increase therapeutic ratio, radiosensitization via gold nanoparticles (GNPs) has been shown to be effective. One challenge is that megavoltage beams generated by clinical linear accelerators are poor initiators of the photoelectric effect. Previous computer models predicted that a diamond target beam (DTB) will yield 400% more low-energy photons, increasing the probability of interacting with GNPs to enhance the radiation dose by 7.7-fold in the GNP vicinity. After testing DTB radiation coupled with GNPs in multiple cell types, we demonstrate decreased head-and-neck cancer (HNC) cell viability in vitro and enhanced cell-killing in zebrafish xenografts compared to standard RT. HNC cell lines also displayed increased double-stranded DNA breaks with DTB irradiation in the presence of GNPs. This study presents preclinical responses to GNP-enhanced radiotherapy with the novel DTB, providing the first functional data to support the theoretical evidence for radiosensitization via GNPs in this context, and highlighting the potential of this approach to optimize the efficacy of RT in anatomically difficult-to-treat tumors.


Assuntos
Ouro
11.
Leukemia ; 36(3): 809-820, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34588613

RESUMO

TET2 loss-of-function mutations are recurrent events in a wide range of hematological malignancies and a physiologic occurrence in blood cells of healthy older adults. It is currently unknown what determines if a person harboring a somatic TET2 mutation will progress to myelodysplastic syndrome or acute myeloid leukemia. Here we develop a zebrafish tet2 mutant through which we show that tet2 loss leads to restricted hematopoietic differentiation combined with a modest upregulation of p53, which is also characteristic of many inherited bone marrow failure syndromes. Uniquely in the context of emergency hematopoiesis by external stimuli, such as infection or cytokine stimulation, lack of tet2 leads hematopoietic stem cells to undergo excessive proliferation, resulting in an accumulation of immature cells, which are poised to become leukemogenic following additional genetic/epigenetic perturbations. This same phenomenon observed in zebrafish extends to human hematopoietic stem cells, identifying TET2 as a critical relay switch in the context of stress hematopoiesis.


Assuntos
Dioxigenases/genética , Neoplasias Hematológicas/genética , Hematopoese , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Proliferação de Células , Modelos Animais de Doenças , Deleção de Genes , Inativação Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Mutação com Perda de Função , Síndromes Mielodisplásicas/genética
12.
Blood ; 138(23): 2337-2346, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320162

RESUMO

Myeloid leukemia in children with Down syndrome (ML-DS) is associated with young age and somatic GATA1 mutations. Because of high event-free survival (EFS) and hypersensitivity of the leukemic blasts to chemotherapy, the prior Children's Oncology Group protocol ML-DS protocol (AAML0431) reduced overall treatment intensity but lacking risk stratification, retained the high-dose cytarabine course (HD-AraC), which was highly associated with infectious morbidity. Despite high EFS of ML-DS, survival for those who relapse is rare. AAML1531 introduced therapeutic risk stratification based on the previously identified prognostic factor, measurable residual disease (MRD) at the end of the first induction course. Standard risk (SR) patients were identified by negative MRD using flow cytometry (<0.05%) and did not receive the historically administered HD-AraC course. Interim analysis of 114 SR patients revealed a 2-year EFS of 85.6% (95% confidence interval [CI], 75.7-95.5), which was significantly lower than for MRD- patients treated with HD-AraC on AAML0431 (P = .0002). Overall survival at 2 years was 91.0% (95% CI, 83.8-95.0). Twelve SR patients relapsed, mostly within 1 year from study entry and had a 1-year OS of 16.7% (95% CI, 2.7-41.3). Complex karyotypes were more frequent in SR patients who relapsed compared with those who did not (36% vs 9%; P = .0248). MRD by error-corrected sequencing of GATA1 mutations was piloted in 18 SR patients and detectable in 60% who relapsed vs 23% who did not (P = .2682). Patients with SR ML-DS had worse outcomes without HD-AraC after risk classification based on flow cytometric MRD.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Citarabina/uso terapêutico , Síndrome de Down/complicações , Leucemia Mieloide/complicações , Leucemia Mieloide/tratamento farmacológico , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/efeitos adversos , Pré-Escolar , Citarabina/administração & dosagem , Citarabina/efeitos adversos , Relação Dose-Resposta a Droga , Síndrome de Down/genética , Feminino , Humanos , Lactente , Leucemia Mieloide/diagnóstico , Leucemia Mieloide/genética , Masculino , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Prognóstico , Resultado do Tratamento
13.
Cancer Cell ; 39(6): 827-844.e10, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34129824

RESUMO

The core cohesin subunit STAG2 is recurrently mutated in Ewing sarcoma but its biological role is less clear. Here, we demonstrate that cohesin complexes containing STAG2 occupy enhancer and polycomb repressive complex (PRC2)-marked regulatory regions. Genetic suppression of STAG2 leads to a compensatory increase in cohesin-STAG1 complexes, but not in enhancer-rich regions, and results in reprogramming of cis-chromatin interactions. Strikingly, in STAG2 knockout cells the oncogenic genetic program driven by the fusion transcription factor EWS/FLI1 was highly perturbed, in part due to altered enhancer-promoter contacts. Moreover, loss of STAG2 also disrupted PRC2-mediated regulation of gene expression. Combined, these transcriptional changes converged to modulate EWS/FLI1, migratory, and neurodevelopmental programs. Finally, consistent with clinical observations, functional studies revealed that loss of STAG2 enhances the metastatic potential of Ewing sarcoma xenografts. Our findings demonstrate that STAG2 mutations can alter chromatin architecture and transcriptional programs to promote an aggressive cancer phenotype.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Endogâmicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/genética , Coesinas
14.
Front Cell Dev Biol ; 9: 660069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987182

RESUMO

Cancer predisposition syndromes are rare, typically monogenic disorders that result from germline mutations that increase the likelihood of developing cancer. Although these disorders are individually rare, resulting cancers collectively represent 5-10% of all malignancies. In addition to a greater incidence of cancer, affected individuals have an earlier tumor onset and are frequently subjected to long-term multi-modal cancer screening protocols for earlier detection and initiation of treatment. In vivo models are needed to better understand tumor-driving mechanisms, tailor patient screening approaches and develop targeted therapies to improve patient care and disease prognosis. The zebrafish (Danio rerio) has emerged as a robust model for cancer research due to its high fecundity, time- and cost-efficient genetic manipulation and real-time high-resolution imaging. Tumors developing in zebrafish cancer models are histologically and molecularly similar to their human counterparts, confirming the validity of these models. The zebrafish platform supports both large-scale random mutagenesis screens to identify potential candidate/modifier genes and recently optimized genome editing strategies. These techniques have greatly increased our ability to investigate the impact of certain mutations and how these lesions impact tumorigenesis and disease phenotype. These unique characteristics position the zebrafish as a powerful in vivo tool to model cancer predisposition syndromes and as such, several have already been created, including those recapitulating Li-Fraumeni syndrome, familial adenomatous polyposis, RASopathies, inherited bone marrow failure syndromes, and several other pathogenic mutations in cancer predisposition genes. In addition, the zebrafish platform supports medium- to high-throughput preclinical drug screening to identify compounds that may represent novel treatment paradigms or even prevent cancer evolution. This review will highlight and synthesize the findings from zebrafish cancer predisposition models created to date. We will discuss emerging trends in how these zebrafish cancer models can improve our understanding of the genetic mechanisms driving cancer predisposition and their potential to discover therapeutic and/or preventative compounds that change the natural history of disease for these vulnerable children, youth and adults.

15.
Haematologica ; 105(10): 2391-2399, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054079

RESUMO

Xenograft models are invaluable tools in establishing the current paradigms of hematopoiesis and leukemogenesis. The zebrafish has emerged as a robust alternative xenograft model but, like mice, lack specific cytokines that mimic the microenvironment found in human patients. To address this critical gap, we generated the first humanized zebrafish that express human hematopoietic-specific cytokines (GM-CSF, SCF, and SDF1α). Termed GSS fish, these zebrafish promote survival, self-renewal and multilineage differentiation of human hematopoietic stem and progenitor cells and result in enhanced proliferation and hematopoietic niche-specific homing of primary human leukemia cells. Using error-corrected RNA sequencing, we determined that patient-derived leukemias transplanted into GSS zebrafish exhibit broader clonal representation compared to transplants into control hosts. GSS zebrafish incorporating error-corrected RNA sequencing establish a new standard for zebrafish xenotransplantation that more accurately recapitulates the human context, providing a more representative cost-effective preclinical model system for evaluating personalized response-based treatment in leukemia and therapies to expand human hematopoietic stem and progenitor cells in the transplant setting.


Assuntos
Leucemia Mieloide Aguda , Peixe-Zebra , Animais , Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Camundongos , Microambiente Tumoral
16.
Elife ; 92020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32720645

RESUMO

Dose-limiting toxicities for cisplatin administration, including ototoxicity and nephrotoxicity, impact the clinical utility of this effective chemotherapy agent and lead to lifelong complications, particularly in pediatric cancer survivors. Using a two-pronged drug screen employing the zebrafish lateral line as an in vivo readout for ototoxicity and kidney cell-based nephrotoxicity assay, we screened 1280 compounds and identified 22 that were both oto- and nephroprotective. Of these, dopamine and L-mimosine, a plant-based amino acid active in the dopamine pathway, were further investigated. Dopamine and L-mimosine protected the hair cells in the zebrafish otic vesicle from cisplatin-induced damage and preserved zebrafish larval glomerular filtration. Importantly, these compounds did not abrogate the cytotoxic effects of cisplatin on human cancer cells. This study provides insights into the mechanisms underlying cisplatin-induced oto- and nephrotoxicity and compelling preclinical evidence for the potential utility of dopamine and L-mimosine in the safer administration of cisplatin.


Assuntos
Cisplatino , Substâncias Protetoras/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/toxicidade , Dopamina/farmacologia , Combinação de Medicamentos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/patologia , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Sistema da Linha Lateral/efeitos dos fármacos , Sistema da Linha Lateral/patologia , Mimosina/farmacologia , Modelos Animais , Peixe-Zebra
17.
Arch Pathol Lab Med ; 144(4): 466-472, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31429606

RESUMO

CONTEXT.­: Detailed diagnostic features of acute myeloid leukemia in Down syndrome are lacking, leading to potential misdiagnoses as standard acute myeloid leukemia occurring in patients with Down syndrome. OBJECTIVE.­: To evaluate diagnostic features of acute myeloid leukemia and myelodysplastic syndrome in patients with Down syndrome. DESIGN.­: Diagnostic bone marrow samples from 163 patients enrolled in the Children's Oncology Group study AAML0431 were evaluated by using central morphologic review and institutional immunophenotyping. Results were compared to overall survival, event-free survival, GATA1 mutation status, cytogenetics, and minimal residual disease results. RESULTS.­: Sixty myelodysplastic syndrome and 103 acute myeloid leukemia samples were reviewed. Both had distinctive features compared to those of patients without Down syndrome. They showed megakaryocytic and erythroid but little myeloid dysplasia, and marked megakaryocytic hyperplasia with unusual megakaryocyte morphology. In acute myeloid leukemia cases, megakaryoblastic differentiation of blasts was most common (54 of 103, 52%); other cases showed erythroblastic (11 of 103, 11%), mixed erythroid/megakaryoblastic (20 of 103, 19%), or no differentiation (10 of 103, 10%). Myelodysplastic syndrome and acute myeloid leukemia cases had similar event-free survival and overall survival. Leukemic subgroups showed interesting, but not statistically significant, trends for survival and minimal residual disease. Cases with institutional diagnoses of French American British M1-5 morphology showed typical features of Down syndrome disease, with survival approaching that of other cases. CONCLUSIONS.­: Myelodysplastic syndrome and acute myeloid leukemia in Down syndrome display features that allow discrimination from standard cases of disease. These distinctions are important for treatment decisions, and for understanding disease pathogenesis. We propose specific diagnostic criteria for Down syndrome-related subtypes of acute myeloid leukemia and myelodysplastic syndrome.


Assuntos
Síndrome de Down/complicações , Leucemia Mieloide Aguda/diagnóstico , Síndromes Mielodisplásicas/diagnóstico , Criança , Feminino , Humanos , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/patologia , Masculino , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/patologia
18.
Cancer ; 126(3): 593-601, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31661160

RESUMO

BACKGROUND: Optimal chemotherapy for treating mixed-phenotype acute leukemia (MPAL) and the role of hematopoietic stem cell transplantation (HSCT) remain uncertain. Major limitations in interpreting available data are MPAL's rarity and the use of definitions other than the currently widely accepted criteria: the World Health Organization 2016 (WHO2016) classification. METHODS: To assess the relative efficacy of chemotherapy types for treating pediatric MPAL, the Children's Oncology Group (COG) Acute Leukemia of Ambiguous Lineage Task Force assembled a retrospective cohort of centrally reviewed WHO2016 MPAL cases selected from banking studies for acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Patients were not treated in COG trials; treatment and outcome data were captured separately. The findings were then integrated with the available, mixed literature to develop a prospective trial in pediatric MPAL. RESULTS: The central review confirmed that 54 of 70 cases fulfilled WHO2016 criteria for MPAL. ALL induction regimens achieved remission in 72% of the cases (28 of 39), whereas AML regimens achieved remission in 69% (9 of 13). The 5-year event-free survival (EFS) and overall survival (OS) rates for the entire cohort were 72% ± 8% and 77% ± 7%, respectively. EFS and OS were 75% ± 13% and 84% ± 11%, respectively, for those receiving ALL chemotherapy alone without HSCT (n = 21). CONCLUSIONS: The results of the COG MPAL cohort and a literature review suggest that ALL chemotherapy without HSCT may be the preferred initial therapy. A prospective trial within the COG is proposed to investigate this approach; AML chemotherapy and/or HSCT will be reserved for those with treatment failure as assessed by minimal residual disease. Embedded biology studies will provide further insight into MPAL genomics.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia Aguda Bifenotípica/epidemiologia , Leucemia Aguda Bifenotípica/terapia , Prognóstico , Adolescente , Adulto , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Intervalo Livre de Doença , Feminino , Humanos , Imunofenotipagem/métodos , Lactente , Leucemia Aguda Bifenotípica/patologia , Masculino , Pediatria/tendências , Organização Mundial da Saúde , Adulto Jovem
19.
Viruses ; 12(1)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861850

RESUMO

Kaposi's sarcoma associated-herpesvirus (KSHV, also known as human herpesvirus-8) is a gammaherpesvirus that establishes life-long infection in human B lymphocytes. KSHV infection is typically asymptomatic, but immunosuppression can predispose KSHV-infected individuals to primary effusion lymphoma (PEL); a malignancy driven by aberrant proliferation of latently infected B lymphocytes, and supported by pro-inflammatory cytokines and angiogenic factors produced by cells that succumb to lytic viral replication. Here, we report the development of the first in vivo model for a virally induced lymphoma in zebrafish, whereby KSHV-infected PEL tumor cells engraft and proliferate in the yolk sac of zebrafish larvae. Using a PEL cell line engineered to produce the viral lytic switch protein RTA in the presence of doxycycline, we demonstrate drug-inducible reactivation from KSHV latency in vivo, which enabled real-time observation and evaluation of latent and lytic phases of KSHV infection. In addition, we developed a sensitive droplet digital PCR method to monitor latent and lytic viral gene expression and host cell gene expression in xenografts. The zebrafish yolk sac is not well vascularized, and by using fluorogenic assays, we confirmed that this site provides a hypoxic environment that may mimic the microenvironment of some human tumors. We found that PEL cell proliferation in xenografts was dependent on the host hypoxia-dependent translation initiation factor, eukaryotic initiation factor 4E2 (eIF4E2). This demonstrates that the zebrafish yolk sac is a functionally hypoxic environment, and xenografted cells must switch to dedicated hypoxic gene expression machinery to survive and proliferate. The establishment of the PEL xenograft model enables future studies that exploit the innate advantages of the zebrafish as a model for genetic and pharmacologic screens.


Assuntos
Suscetibilidade a Doenças , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Sarcoma de Kaposi/virologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Xenoenxertos , Humanos , Peixe-Zebra
20.
Clin Cancer Res ; 25(14): 4552-4566, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979745

RESUMO

PURPOSE: Ewing sarcoma is an aggressive solid tumor malignancy of childhood. Although current treatment regimens cure approximately 70% of patients with localized disease, they are ineffective for most patients with metastases or relapse. New treatment combinations are necessary for these patients. EXPERIMENTAL DESIGN: Ewing sarcoma cells are dependent on focal adhesion kinase (FAK) for growth. To identify candidate treatment combinations for Ewing sarcoma, we performed a small-molecule library screen to identify compounds synergistic with FAK inhibitors in impairing Ewing cell growth. The activity of a top-scoring class of compounds was then validated across multiple Ewing cell lines in vitro and in multiple xenograft models of Ewing sarcoma. RESULTS: Numerous Aurora kinase inhibitors scored as synergistic with FAK inhibition in this screen. We found that Aurora kinase B inhibitors were synergistic across a larger range of concentrations than Aurora kinase A inhibitors when combined with FAK inhibitors in multiple Ewing cell lines. The combination of AZD-1152, an Aurora kinase B-selective inhibitor, and PF-562271 or VS-4718, FAK-selective inhibitors, induced apoptosis in Ewing sarcoma cells at concentrations that had minimal effects on survival when cells were treated with either drug alone. We also found that the combination significantly impaired tumor progression in multiple xenograft models of Ewing sarcoma. CONCLUSIONS: FAK and Aurora kinase B inhibitors synergistically impair Ewing sarcoma cell viability and significantly inhibit tumor progression. This study provides preclinical support for the consideration of a clinical trial testing the safety and efficacy of this combination for patients with Ewing sarcoma.


Assuntos
Aurora Quinase B/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Sinergismo Farmacológico , Quinase 1 de Adesão Focal/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sarcoma de Ewing/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Aminopiridinas/farmacologia , Animais , Apoptose , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/patologia , Proliferação de Células , Quimioterapia Combinada , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Indóis/farmacologia , Camundongos , Camundongos Nus , Organofosfatos/farmacologia , Quinazolinas/farmacologia , Sarcoma de Ewing/enzimologia , Sarcoma de Ewing/patologia , Sulfonamidas/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA