Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
J Thromb Haemost ; 21(9): 2327-2338, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315795

RESUMO

Endoglin, alias CD105, is a human membrane glycoprotein highly expressed in vascular endothelial cells. It is involved in angiogenesis and angiogenesis-related diseases, including the rare vascular pathology known as hereditary hemorrhagic telangiectasia type 1. Although endoglin acts as an accessory receptor for members of the transforming growth factor-ß family, in recent years, emerging evidence has shown a novel functional role for this protein beyond the transforming growth factor-ß system. In fact, endoglin has been found to be an integrin counterreceptor involved in endothelial cell adhesion processes during pathological inflammatory conditions and primary hemostasis. Furthermore, a circulating form of endoglin, also named as soluble endoglin, whose levels are abnormally increased in different pathological conditions, such as preeclampsia, seems to act as an antagonist of membrane-bound endoglin and as a competitor of the fibrinogen-integrin interaction in platelet-dependent thrombus formation. These studies suggest that membrane-bound endoglin and circulating endoglin are important components involved in vascular homeostasis and hemostasis.


Assuntos
Endoglina , Feminino , Humanos , Gravidez , Antígenos CD/metabolismo , Endoglina/metabolismo , Células Endoteliais/metabolismo , Integrinas/metabolismo , Receptores de Superfície Celular/metabolismo , Telangiectasia Hemorrágica Hereditária , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
Adv Exp Med Biol ; 1408: 253-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093432

RESUMO

Endoglin (CD105) is an auxiliary receptor of transforming growth factor (TGF)-ß family members that is expressed in human melanomas. It is heterogeneously expressed by primary and metastatic melanoma cells, and endoglin targeting as a therapeutic strategy for melanoma tumors is currently been explored. However, its involvement in tumor development and malignancy is not fully understood. Here, we find that endoglin expression correlates with malignancy of primary melanomas and cultured melanoma cell lines. Next, we have analyzed the effect of ectopic endoglin expression on two miRNAs (hsa-mir-214 and hsa-mir-370), both involved in melanoma tumor progression and endoglin regulation. We show that compared with control cells, overexpression of endoglin in the WM-164 melanoma cell line induces; (i) a significant increase of hsa-mir-214 levels in small extracellular vesicles (EVs) as well as an increased trend in cells; and (ii) significantly lower levels of hsa-mir-370 in the EVs fractions, whereas no significant differences were found in cells. As hsa-mir-214 and hsa-mir-370 are not just involved in melanoma tumor progression, but they can also target endoglin-expressing endothelial cells in the tumor vasculature, these results suggest a complex and differential regulatory mechanism involving the intracellular and extracellular signaling of hsa-mir-214 and hsa-mir-370 in melanoma development and progression.


Assuntos
Vesículas Extracelulares , Melanoma , MicroRNAs , Humanos , Endoglina/metabolismo , Células Endoteliais/metabolismo , Melanoma/patologia , MicroRNAs/genética , Vesículas Extracelulares/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Int J Mol Sci ; 23(15)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955799

RESUMO

Endoglin (ENG) is a mesenchymal stem cell (MSC) marker typically expressed by active endothelium. This transmembrane glycoprotein is shed by matrix metalloproteinase 14 (MMP14). Our previous work demonstrated potent preclinical activity of first-in-class anti-ENG antibody-drug conjugates as a nascent strategy to eradicate Ewing sarcoma (ES), a devastating rare bone/soft tissue cancer with a putative MSC origin. We also defined a correlation between ENG and MMP14 expression in ES. Herein, we show that ENG expression is significantly associated with a dismal prognosis in a large cohort of ES patients. Moreover, both ENG/MMP14 are frequently expressed in primary ES tumors and metastasis. To deepen in their functional relevance in ES, we conducted transcriptomic and proteomic profiling of in vitro ES models that unveiled a key role of ENG and MMP14 in cell mechano-transduction. Migration and adhesion assays confirmed that loss of ENG disrupts actin filament assembly and filopodia formation, with a concomitant effect on cell spreading. Furthermore, we observed that ENG regulates cell-matrix interaction through activation of focal adhesion signaling and protein kinase C expression. In turn, loss of MMP14 contributed to a more adhesive phenotype of ES cells by modulating the transcriptional extracellular matrix dynamics. Overall, these results suggest that ENG and MMP14 exert a significant role in mediating correct spreading machinery of ES cells, impacting the aggressiveness of the disease.


Assuntos
Neoplasias Ósseas , Endoglina/metabolismo , Sarcoma de Ewing , Neoplasias Ósseas/genética , Endoglina/genética , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Proteômica , Receptores de Fatores de Crescimento , Sarcoma de Ewing/patologia , Transdução de Sinais
5.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681942

RESUMO

Endoglin (Eng, CD105) is a type I membrane glycoprotein that functions in endothelial cells as an auxiliary receptor for transforming growth factor ß (TGF-ß)/bone morphogenetic protein (BMP) family members and as an integrin ligand, modulating the vascular pathophysiology. Besides the membrane-bound endoglin, there is a soluble form of endoglin (sEng) that can be generated by the action of the matrix metalloproteinase (MMP)-14 or -12 on the juxtamembrane region of its ectodomain. High levels of sEng have been reported in patients with preeclampsia, hypercholesterolemia, atherosclerosis and cancer. In addition, sEng is a marker of cardiovascular damage in patients with hypertension and diabetes, plays a pathogenic role in preeclampsia, and inhibits angiogenesis and tumor proliferation, migration, and invasion in cancer. However, the mechanisms of action of sEng have not yet been elucidated, and new tools and experimental approaches are necessary to advance in this field. To this end, we aimed to obtain a fluorescent form of sEng as a new tool for biological imaging. Thus, we cloned the extracellular domain of endoglin in the pEGFP-N1 plasmid to generate a fusion protein with green fluorescent protein (GFP), giving rise to pEGFP-N1/Eng.EC. The recombinant fusion protein was characterized by transient and stable transfections in CHO-K1 cells using fluorescence microscopy, SDS-PAGE, immunodetection, and ELISA techniques. Upon transfection with pEGFP-N1/Eng.EC, fluorescence was readily detected in cells, indicating that the GFP contained in the recombinant protein was properly folded into the cytosol. Furthermore, as evidenced by Western blot analysis, the secreted fusion protein yielded the expected molecular mass and displayed a specific fluorescent signal. The fusion protein was also able to bind to BMP9 and BMP10 in vitro. Therefore, the construct described here could be used as a tool for functional in vitro studies of the extracellular domain of endoglin.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Endoglina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Células CHO , Cricetulus , Endoglina/genética , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas Recombinantes de Fusão/genética
6.
J Clin Med ; 9(6)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517280

RESUMO

The diagnosis of hereditary hemorrhagic telangiectasia (HHT) is based on the Curaçao criteria: epistaxis, telangiectases, arteriovenous malformations in internal organs, and family history. Genetically speaking, more than 90% of HHT patients show mutations in ENG or ACVRL1/ALK1 genes, both belonging to the TGF-ß/BMP9 signaling pathway. Despite clear knowledge of the symptoms and genes of the disease, we still lack a definite cure for HHT, having just palliative measures and pharmacological trials. Among the former, two strategies are: intervention at "ground zero" to minimize by iron and blood transfusions in order to counteract anemia. Among the later, along the last 15 years, three different strategies have been tested: (1) To favor coagulation with antifibrinolytic agents (tranexamic acid); (2) to increase transcription of ENG and ALK1 with specific estrogen-receptor modulators (bazedoxifene or raloxifene), antioxidants (N-acetylcysteine, resveratrol), or immunosuppressants (tacrolimus); and (3) to impair the abnormal angiogenic process with antibodies (bevacizumab) or blocking drugs like etamsylate, and propranolol. This manuscript reviews the main strategies and sums up the clinical trials developed with drugs alleviating HHT.

7.
Cells ; 8(9)2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540324

RESUMO

Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-ß receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-ß receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-ß family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation.


Assuntos
Endoglina/metabolismo , Galectina 3/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Proteínas Sanguíneas , Células CHO , Cricetulus , Galectinas , Células Endoteliais da Veia Umbilical Humana , Humanos , Análise Serial de Proteínas/métodos , Ligação Proteica
8.
Int J Mol Sci ; 20(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242676

RESUMO

Upon inflammation, monocyte-derived macrophages (MΦ) infiltrate blood vessels to regulate several processes involved in vascular pathophysiology. However, little is known about the mediators involved. Macrophage polarization is crucial for a fast and efficient initial response (GM-MΦ) and a good resolution (M-MΦ) of the inflammatory process. The functional activity of polarized MΦ is exerted mainly through their secretome, which can target other cell types, including endothelial cells. Endoglin (CD105) is a cell surface receptor expressed by endothelial cells and MΦ that is markedly upregulated in inflammation and critically involved in angiogenesis. In addition, a soluble form of endoglin with anti-angiogenic activity has been described in inflammation-associated pathologies. The aim of this work was to identify components of the MΦ secretome involved in the shedding of soluble endoglin. We find that the GM-MΦ secretome contains metalloprotease 12 (MMP-12), a GM-MΦ specific marker that may account for the anti-angiogenic activity of the GM-MΦ secretome. Cell surface endoglin is present in both GM-MΦ and M-MΦ, but soluble endoglin is only detected in GM-MΦ culture supernatants. Moreover, MMP-12 is responsible for the shedding of soluble endoglin in vitro and in vivo by targeting membrane-bound endoglin in both MΦ and endothelial cells. These data demonstrate a direct correlation between GM-MΦ polarization, MMP-12, and soluble endoglin expression and function. By targeting endothelial cells, MMP-12 may represent a novel mediator involved in vascular homeostasis.


Assuntos
Endoglina/metabolismo , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endoglina/genética , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Modelos Biológicos
9.
Gene ; 696: 33-39, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30763665

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a vascular rare disease characterized by nose and gastrointestinal bleeding, skin and mucosa telangiectasias, and arteriovenous malformations in internal organs. HHT shows an autosomal dominant inheritance and a worldwide prevalence of approximately 1:5000 individuals. In >80% of patients, HHT is caused by mutations in either ENG (HHT1) or ACVRL1 (HHT2) genes, which code for the membrane proteins Endoglin and Activin A Receptor Type II-Like Kinase 1 (ALK1), respectively, both belonging to the TGF-ß/BMP signaling pathway. In this work, we describe a novel mutation in exon 9 of ENG (c.1145 G > A) found in five affected members of a family, all of them with characteristic symptoms of HHT. This mutation involves Cys382 residue of the Endoglin protein (p.Cys382 > Tyr) in the zona pellucida (ZP) module of its extracellular region. This is a critical residue involved in a conserved intrachain disulphide bond and in the correct folding of the protein. In fact, transfection studies in human cells using Endoglin expression vectors demonstrated that the p.Cys382 > Tyr mutation results in a marked reduction in the levels of the Endoglin protein. These results demonstrate the pathogenic role for this variant in HHT1 and confirm the key function of Cys382 in Endoglin expression.


Assuntos
Endoglina/genética , Domínios Proteicos/genética , Telangiectasia Hemorrágica Hereditária/genética , Adulto , Criança , Cisteína/genética , Endoglina/metabolismo , Éxons/genética , Feminino , Haploinsuficiência/genética , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Linhagem , Dobramento de Proteína , Transdução de Sinais , Telangiectasia Hemorrágica Hereditária/patologia , Adulto Jovem
10.
FASEB J ; 33(5): 6099-6114, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753095

RESUMO

Our objective was to investigate the effect of cholesterol [hypercholesterolemia and 7-ketocholesterol (7K)] on endoglin (Eng) expression and regulation with respect to endothelial or vascular dysfunction in vivo and in vitro. In vivo experiments were performed in 2-mo-old atherosclerosis-prone apolipoprotein E-deficient/LDL receptor-deficient (ApoE-/-/LDLR-/-) female mice and their wild-type C57BL/6J littermates. In in vitro experiments, human aortic endothelial cells (HAECs) were treated with 7K. ApoE-/-/LDLR-/- mice developed hypercholesterolemia accompanied by increased circulating levels of P-selectin and Eng and a disruption of NO metabolism. Functional analysis of the aorta demonstrated impaired vascular reactivity, and Western blot analysis revealed down-regulation of membrane Eng/Smad2/3/eNOS signaling in ApoE-/-/LDLR-/- mice. 7K increased Eng expression via Krüppel-like factor 6 (KLF6), liver X nuclear receptor, and NF-κB in HAECs. 7K-induced Eng expression was prevented by the treatment with 2-hydroxypropyl-ß-cyclodextrin; 8-{[5-chloro-2-(4-methylpiperazin-1-yl) pyridine-4-carbonyl] amino}-1-(4-fluorophenyl)-4, 5-dihydrobenzo[g]indazole-3-carboxamide; or by KLF6 silencing. 7K induced increased adhesion and transmigration of monocytic human leukemia promonocytic cell line cells and was prevented by Eng silencing. We concluded that hypercholesterolemia altered Eng expression and signaling, followed by endothelial or vascular dysfunction before formation of atherosclerotic lesions in ApoE-/-/LDLR-/- mice. By contrast, 7K increased Eng expression and induced inflammation in HAECs, which was followed by an increased adhesion and transmigration of monocytes via endothelium, which was prevented by Eng inhibition. Thus, we propose a relevant role for Eng in endothelial or vascular dysfunction or inflammation when exposed to cholesterol.-Vicen, M., Vitverova, B., Havelek, R., Blazickova, K., Machacek, M., Rathouska, J., Najmanová, I., Dolezelova, E., Prasnicka, A., Sternak, M., Bernabeu, C., Nachtigal, P. Regulation and role of endoglin in cholesterol-induced endothelial and vascular dysfunction in vivo and in vitro.


Assuntos
Endoglina/metabolismo , Endotélio Vascular/metabolismo , Hipercolesterolemia/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/genética , Células Cultivadas , Colesterol/metabolismo , Endoglina/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Feminino , Humanos , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Indazóis/farmacologia , Ácidos Isonicotínicos/farmacologia , Fator 6 Semelhante a Kruppel/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Selectina-P/metabolismo , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Receptores de LDL/genética , Proteínas Smad/metabolismo , beta-Ciclodextrinas/farmacologia
11.
Thromb Haemost ; 117(10): 1908-1918, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28771278

RESUMO

Endothelial colony-forming cells (ECFCs) are progenitor cells committed to endothelial lineages and have robust vasculogenic properties. Mesenchymal stem cells (MSCs) have been described to support ECFC-mediated angiogenic processes in various matrices. However, MSC-ECFC interactions in hind limb ischemia (HLI) are largely unknown. Here we examined whether co-administration of ECFCs and MSCs bolsters vasculogenic activity in nude mice with HLI. In addition, as we have previously shown that endoglin is a key adhesion molecule, we evaluated its involvement in ECFC/MSC interaction. Foot perfusion increased on day 7 after ECFC injection and was even better at 14 days. Co-administration of MSCs significantly increased vessel density and foot perfusion on day 7 but the differences were no longer significant at day 14. Analysis of mouse and human CD31, and in situ hybridization of the human ALU sequence, showed enhanced capillary density in ECFC+MSC mice. When ECFCs were silenced for endoglin, coinjection with MSCs led to lower vessel density and foot perfusion at both 7 and 14 days (p<0.001). Endoglin silencing in ECFCs did not affect MSC differentiation into perivascular cells or other mesenchymal lineages. Endoglin silencing markedly inhibited ECFC adhesion to MSCs. Thus, MSCs, when combined with ECFCs, accelerate muscle recovery in a mouse model of hind limb ischemia, through an endoglin-dependent mechanism.


Assuntos
Endoglina/metabolismo , Células Progenitoras Endoteliais/transplante , Isquemia/cirurgia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Adipogenia , Animais , Adesão Celular , Células Cultivadas , Condrogênese , Modelos Animais de Doenças , Endoglina/genética , Células Progenitoras Endoteliais/metabolismo , Membro Posterior , Isquemia/metabolismo , Isquemia/patologia , Isquemia/fisiopatologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Nus , Músculo Esquelético/patologia , Necrose , Fenótipo , Interferência de RNA , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Transdução de Sinais , Fatores de Tempo , Transfecção
12.
Expert Opin Ther Targets ; 21(10): 933-947, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28796572

RESUMO

INTRODUCTION: Hereditary Haemorrhagic Telangiectasia (HHT) is as an autosomal dominant trait characterized by frequent nose bleeds, mucocutaneous telangiectases, arteriovenous malformations (AVMs) of the lung, liver and brain, and gastrointestinal bleedings due to telangiectases. HHT is originated by mutations in genes whose encoded proteins are involved in the transforming growth factor ß (TGF-ß) family signalling of vascular endothelial cells. In spite of the great advances in the diagnosis as well as in the molecular, cellular and animal models of HHT, the current treatments remain just at the palliative level. Areas covered: Pathogenic mutations in genes coding for the TGF-ß receptors endoglin (ENG) (HHT1) or the activin receptor-like kinase-1 (ACVRL1 or ALK1) (HHT2), are responsible for more than 80% of patients with HHT. Therefore, ENG and ALK1 are the main potential therapeutic targets for HHT and the focus of this review. The current status of the preclinical and clinical studies, including the anti-angiogenic strategy, have been addressed. Expert opinion: Endoglin and ALK1 are attractive therapeutic targets in HHT. Because haploinsufficiency is the pathogenic mechanism in HHT, several therapeutic approaches able to enhance protein expression and/or function of endoglin and ALK1 are keys to find novel and efficient treatments for the disease.


Assuntos
Receptores de Activinas Tipo II/genética , Endoglina/genética , Terapia de Alvo Molecular , Telangiectasia Hemorrágica Hereditária/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Animais , Desenho de Fármacos , Células Endoteliais/metabolismo , Humanos , Mutação , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/fisiopatologia , Fator de Crescimento Transformador beta/metabolismo
13.
Life Sci ; 175: 52-60, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28336397

RESUMO

AIMS: Endoglin is a transmembrane glycoprotein, that plays an important role in regulating endothelium. Proteolytic cleavage of membrane endoglin releases soluble endoglin (sEng), whose increased plasma levels have been detected in diseases related to the cardiovascular system. It was proposed that sEng might damage vascular endothelium, but detailed information about the potential mechanisms involved is not available. Thus, we hypothesized that sEng contributes to endothelial dysfunction, leading to a pro-inflammatory phenotype by a possible modulation of the TGF-ß and/or inflammatory pathways. MAIN METHODS: Human umbilical vein endothelial cells (HUVECs) and Human embryonic kidney cell line (HEK293T) were treated with different sEng concentration and time in order to reveal possible effect on biomarkers of inflammation and TGF-ß signaling. IL6 and NFκB reporter luciferase assays, quantitative real-time PCR analysis, Western blot analysis and immunofluorescence flow cytometry were used. KEY FINDINGS: sEng treatment results in activation of NF-κB/IL-6 expression, increased expression of membrane endoglin and reduced expression of Id-1. On the other hand, no significant effects on other markers of endothelial dysfunction and inflammation, including eNOS, peNOSS1177, VCAM-1, COX-1, COX-2 and ICAM-1 were detected. SIGNIFICANCE: As a conclusion, sEng treatment resulted in an activation of NF-κB, IL-6, suggesting activation of pro-inflammatory phenotype in endothelial cells. The precise mechanism of this activation and its consequence remains to be elucidated. A combined treatment of sEng with other cardiovascular risk factors will be necessary in order to reveal whether sEng is not only a biomarker of cardiovascular diseases, but also a protagonist of endothelial dysfunction.


Assuntos
Endoglina/biossíntese , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interleucina-6/biossíntese , NF-kappa B/biossíntese , Transdução de Sinais , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Proteína 1 Inibidora de Diferenciação/biossíntese , Solubilidade
14.
PLoS Genet ; 12(3): e1005935, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27010826

RESUMO

Endoglin is an auxiliary receptor for members of the TGF-ß superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-ß receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Eng(fl/fl)LysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Eng(fl/fl)LysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-ß1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients.


Assuntos
Receptores de Ativinas Tipo I/genética , Imunidade Inata/genética , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Telangiectasia Hemorrágica Hereditária/genética , Fator de Crescimento Transformador beta/genética , Receptores de Ativinas Tipo I/biossíntese , Receptores de Activinas Tipo II , Animais , Endoglina , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Infecções Oportunistas/genética , Infecções Oportunistas/patologia , Fagocitose/genética , Telangiectasia Hemorrágica Hereditária/patologia
15.
Angiogenesis ; 19(2): 155-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26850053

RESUMO

After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-ß) receptor complex such as endoglin and activin receptor-like kinase 1. The membrane metalloproteinase 14 (MMP14 or MT1-MMP) targets endoglin to release soluble endoglin and is involved in vascular inflammation and endothelial tubulogenesis. However, little is known about the regulation of MMP14 expression during vascular wounding. In vitro denudation of monolayers of human endothelial cell monolayers leads to an increase in the KLF6 gene transcriptional rate, followed by an upregulation of MMP14 and release of soluble endoglin. Concomitant with this process, MMP14 co-localizes with endoglin in the sprouting endothelial cells surrounding the wound border. MMP14 expression at mRNA and protein levels is increased by ectopic KLF6 and downregulated by KLF6 suppression in cultured endothelial cells. Moreover, after wire-induced endothelial denudation, Klf6 (+/-) mice show lower levels of MMP14 in their vasculature compared with their wild-type siblings. Ectopic cellular expression of KLF6 results in an increased transcription rate of MMP14, and chromatin immunoprecipitation assays show that KLF6 interacts with MMP14 promoter in ECs, this interaction being enhanced during wound healing. Furthermore, KLF6 markedly increases the transcriptional activity of different reporter constructs of MMP14 gene promoter. These results suggest that KLF6 regulates MMP14 transcription and is a critical player of the gene expression network triggered during endothelial repair.


Assuntos
Endoglina/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Metaloproteinase 14 da Matriz/genética , Proteínas Proto-Oncogênicas/metabolismo , Regulação para Cima , Lesões do Sistema Vascular/enzimologia , Lesões do Sistema Vascular/genética , Animais , Sequência de Bases , Simulação por Computador , Endoglina/genética , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator 6 Semelhante a Kruppel , Metaloproteinase 14 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Transcrição Gênica , Regulação para Cima/genética , Lesões do Sistema Vascular/patologia , Cicatrização
16.
Thromb Haemost ; 115(6): 1167-77, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26818701

RESUMO

Hereditary haemorrhagic telangiectasia (HHT), or Rendu-Osler-Weber syndrome, is a dominant genetic vascular disorder. In HHT, blood vessels are weak and prone to bleeding, leading to epistaxis and anaemia, severely affecting patients' quality of life. Development of vascular malformations in HHT patients is originated mainly by mutations in ACVRL1/ALK1 (activin receptor-like kinase type I) or Endoglin (ENG) genes. These genes encode proteins of the TGF-ß signalling pathway in endothelial cells, controlling angiogenesis. Haploinsufficiency of these proteins is the basis of HHT pathogenicity. It was our objective to study the efficiency of Bazedoxifene, a selective estrogen receptor modulator (SERM) in HHT, looking for a decrease in epistaxis, and understanding the underlying molecular mechanism. Plasma samples of five HHT patients were collected before, and after 1 and 3 months of Bazedoxifene treatment. ENG and ALK1 expression in activated mononuclear cells derived from blood, as well as VEGF plasma levels, were measured. Quantification of Endoglin and ALK1 mRNA was done in endothelial cells derived from HHT and healthy donors, after in vitro treatment with Bazedoxifene. Angiogenesis was also measured by tubulogenesis and wound healing assays. Upon Bazedoxifene treatment, haemoglobin levels of HHT patients increased and the quantity and frequency of epistaxis decreased. Bazedoxifene increased Endoglin and ALK1 mRNA levels, in cells derived from blood samples and in cultured endothelial cells, promoting tube formation. In conclusion, Bazedoxifene seems to decrease bleeding in HHT by partial compensation of haploinsufficiency. The results shown here are the basis of a new orphan drug designation for HHT by the European Medicine Agency (EMA).


Assuntos
Indóis/uso terapêutico , Telangiectasia Hemorrágica Hereditária/tratamento farmacológico , Receptores de Activinas Tipo II/genética , Idoso , Células Cultivadas , Endoglina/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Hemorragia/sangue , Hemorragia/tratamento farmacológico , Hemorragia/etiologia , Humanos , Pessoa de Meia-Idade , Neovascularização Fisiológica/efeitos dos fármacos , Produção de Droga sem Interesse Comercial , Projetos Piloto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/genética , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização/efeitos dos fármacos
17.
Cell Mol Life Sci ; 73(8): 1715-39, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26646071

RESUMO

The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for ß1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or ß1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5ß1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.


Assuntos
Antígenos CD/metabolismo , Adesão Celular/fisiologia , Endotélio Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Podócitos/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos CD/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endoglina , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Integrina beta1/genética , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Neovascularização Patológica/metabolismo , Pericitos/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Receptores de Superfície Celular/genética , Retina/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia
18.
Carcinogenesis ; 36(2): 212-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25503931

RESUMO

Increased levels of soluble endoglin (Sol-Eng) correlate with poor outcome in human cancer. We have previously shown that shedding of membrane endoglin, and concomitant release of Sol-Eng is a late event in chemical mouse skin carcinogenesis associated with the development of undifferentiated spindle cell carcinomas (SpCCs). In this report, we show that mouse skin SpCCs exhibit a high expression of hepatocyte growth factor (HGF) and an elevated ratio of its active tyrosine kinase receptor Met versus total Met levels. We have evaluated the effect of Sol-Eng in spindle carcinoma cells by transfection of a cDNA encoding most of the endoglin ectodomain or by using purified recombinant Sol-Eng. We found that Sol-Eng inhibited both mitogen-activated protein kinase (MAPK) activity and cell growth in vitro and in vivo. Sol-Eng also blocked MAPK activation by transforming growth factor-ß1 (TGF-ß1) and impaired both basal and HGF-induced activation of Met and downstream MAPK. Moreover, Sol-Eng strongly reduced basal and HGF-stimulated spindle cell migration and invasion. Both Sol-Eng and full-length endoglin were shown to interact with Met by coimmunoprecipitation experiments. However, full-length endoglin expressed at the plasma membrane of spindle carcinoma cells had no effect on Met signaling activity, and was unable to inhibit HGF-induced cell migration/invasion. These results point to a paradoxical suppressor role for Sol-Eng in carcinogenesis.


Assuntos
Antígenos CD/metabolismo , Carcinogênese/metabolismo , Fator de Crescimento de Hepatócito/biossíntese , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Sarcoma/metabolismo , Neoplasias Cutâneas/metabolismo , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Animais , Antígenos CD/genética , Carcinogênese/patologia , Movimento Celular/genética , Proliferação de Células/genética , DNA Complementar/genética , Endoglina , Ativação Enzimática , Feminino , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Prognóstico , Receptores de Superfície Celular/genética , Sarcoma/patologia , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/farmacologia , Transfecção , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Células Tumorais Cultivadas
19.
J Cell Sci ; 127(Pt 12): 2723-35, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24777481

RESUMO

Endoglin plays a crucial role in pathophysiological processes such as hereditary hemorrhagic telangiectasia (HHT), preeclampsia and cancer. Endoglin expression is upregulated during the monocyte-to-macrophage transition, but little is known about its regulation and function in these immune cells. Two different alternatively spliced isoforms of endoglin have been reported, L-endoglin and S-endoglin. Although L-endoglin is the predominant variant, here, we found that there was an increased expression of the S-endoglin isoform during senescence of the myeloid lineage in human and murine models. We performed a stable isotope labelling of amino acids in cell culture (SILAC) analysis of both L-endoglin and S-endoglin transfectants in the human promonocytic cell line U937. Analysis of differentially expressed protein clusters allowed the identification of cellular activities affected during aging. S-endoglin expression led to decreased cellular proliferation and a decreased survival response to granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced apoptosis, as well as increased oxidative stress. Gene expression and functional studies suggested that there was a non-redundant role for each endoglin isoform in monocyte biology. In addition, we found that S-endoglin impairs the monocytic differentiation into the pro-inflammatory M1 phenotype and contributes to the compromised status of macrophage functions during aging.


Assuntos
Antígenos CD/metabolismo , Macrófagos/fisiologia , Receptores de Superfície Celular/metabolismo , Processamento Alternativo , Antígenos CD/genética , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Polaridade Celular , Senescência Celular , Endoglina , Expressão Gênica , Humanos , Monócitos/fisiologia , Estresse Oxidativo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superfície Celular/genética
20.
Carcinogenesis ; 35(8): 1770-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24618373

RESUMO

It has been proposed that epithelial cells can acquire invasive properties through exposure to paracrine signals originated from mesenchymal cells within the tumor microenvironment. Transforming growth factor-ß (TGF-ß) has been revealed as an active factor that mediates the epithelial-stroma cross-talk that facilitates cell invasion and metastasis. TGF-ß signaling is modulated by the coreceptor Endoglin (Eng), which shows a tumor suppressor activity in epithelial cells and regulates the ALK1-Smad1,5,8 as well as the ALK5-Smad2,3 signaling pathways. In the current work, we present evidence showing that cell surface Eng abundance in epithelial MCF-7 breast cancer cells is inversely related with cell motility. Shedding of Eng in MCF-7 cell surface by soluble matrix metalloproteinase-14 (MMP-14) derived from the HS-5 bone-marrow-derived cell line induces a motile epithelial phenotype. On the other hand, restoration of full-length Eng expression blocks the stromal stimulus on migration. Processing of surface Eng by stromal factors was demonstrated by biotin-neutravidin labeling of cell surface proteins and this processing generated a shift in TGF-ß signaling through the activation of Smad2,3 pathway. Stromal MMP-14 abundance was stimulated by TGF-ß secreted by MCF-7 cells acting in a paracrine manner. In turn, the stromal proteolytic activity of soluble MMP-14, by inducing Eng shedding, promoted malignant progression. From these data, and due to the capacity of TGF-ß to regulate malignancy in epithelial cancer, we propose that stromal-dependent epithelial Eng shedding constitutes a putative mechanism that exerts an environmental control of cell malignancy.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Células Epiteliais/patologia , Metaloproteinase 14 da Matriz/metabolismo , Células-Tronco Mesenquimais/patologia , Receptores de Superfície Celular/metabolismo , Antígenos CD/genética , Western Blotting , Neoplasias da Mama/genética , Proliferação de Células , Meios de Cultivo Condicionados/farmacologia , Endoglina , Células Epiteliais/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunoprecipitação , Metaloproteinase 14 da Matriz/genética , Células-Tronco Mesenquimais/metabolismo , Microscopia de Fluorescência , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA