Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 13(1): 24, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982038

RESUMO

Kindler syndrome (KS) is a rare genodermatosis resulting from loss-of-function mutations in FERMT1, the gene that encodes Kindlin-1. KS patients have a high propensity to develop aggressive and metastatic cutaneous squamous cell carcinoma (cSCC). Here we show in non-KS-associated patients that elevation of FERMT1 expression is increased in actinic keratoses compared to normal skin, with a further increase in cSCC supporting a pro-tumorigenic role in this population. In contrast, we show that loss of Kindlin-1 leads to increased SCC tumor growth in vivo and in 3D spheroids, which was associated with the development of a hypoxic tumor environment and increased glycolysis. The metalloproteinase Mmp13 was upregulated in Kindlin-1-depleted tumors, and increased expression of MMP13 was responsible for driving increased invasion of the Kindlin-1-depleted SCC cells. These results provide evidence that Kindlin-1 loss in SCC can promote invasion through the upregulation of MMP13, and offer novel insights into how Kindlin-1 loss leads to the development of a hypoxic environment that is permissive for tumor growth.

2.
Biophys J ; 122(8): 1526-1537, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36932676

RESUMO

The distribution of red blood cells (RBCs) in the microcirculation determines the oxygen delivery and solute transport to tissues. This process relies on the partitioning of RBCs at successive bifurcations throughout the microvascular network, and it has been known since the last century that RBCs partition disproportionately to the fractional blood flow rate, therefore leading to heterogeneity of the hematocrit (i.e., volume fraction of RBCs in blood) in microvessels. Usually, downstream of a microvascular bifurcation, the vessel branch with a higher fraction of blood flow receives an even higher fraction of RBC flux. However, both temporal and time-average deviations from this phase-separation law have been observed in recent studies. Here, we quantify how the microscopic behavior of RBC lingering (i.e., RBCs temporarily residing near the bifurcation apex with diminished velocity) influences their partitioning, through combined in vivo experiments and in silico simulations. We developed an approach to quantify the cell lingering at highly confined capillary-level bifurcations and demonstrate that it correlates with deviations of the phase-separation process from established empirical predictions by Pries et al. Furthermore, we shed light on how the bifurcation geometry and cell membrane rigidity can affect the lingering behavior of RBCs; e.g., rigid cells tend to linger less than softer ones. Taken together, RBC lingering is an important mechanism that should be considered when studying how abnormal RBC rigidity in diseases such as malaria and sickle-cell disease could hinder the microcirculatory blood flow or how the vascular networks are altered under pathological conditions (e.g., thrombosis, tumors, aneurysm).


Assuntos
Eritrócitos , Modelos Cardiovasculares , Hematócrito , Microcirculação/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
3.
Acta Neuropathol ; 144(2): 283-303, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35635573

RESUMO

Cerebral small vessel disease (SVD) is the leading cause of vascular dementia, causes a quarter of strokes, and worsens stroke outcomes. The disease is characterised by patchy cerebral small vessel and white matter pathology, but the underlying mechanisms are poorly understood. This microvascular and tissue damage has been classically considered secondary to extrinsic factors, such as hypertension, but this fails to explain the patchy nature of the disease, the link to endothelial cell (EC) dysfunction even when hypertension is absent, and the increasing evidence of high heritability to SVD-related brain damage. We have previously shown the link between deletion of the phospholipase flippase Atp11b and EC dysfunction in an inbred hypertensive rat model with SVD-like pathology and a single nucleotide polymorphism (SNP) in ATP11B associated with human sporadic SVD. Here, we generated a novel normotensive transgenic rat model, where Atp11b is deleted, and show pathological, imaging and behavioural changes typical of those in human SVD, but that occur without hypertension. Atp11bKO rat brain and retinal small vessels show ECs with molecular and morphological changes of dysfunction, with myelin disruption in a patchy pattern around some but not all brain small vessels, similar to the human brain. We show that ATP11B/ATP11B is heterogeneously expressed in ECs in normal rat and human brain even in the same transverse section of the same blood vessel, suggesting variable effects of the loss of ATP11B on each vessel and an explanation for the patchy nature of the disease. This work highlights a link between inherent EC dysfunction and vulnerability to SVD white matter damage with a marked heterogeneity of ECs in vivo which modulates this response, occurring even in the absence of hypertension. These findings refocus our strategies for therapeutics away from antihypertensive (and vascular risk factor) control alone and towards ECs in the effort to provide alternative targets to prevent a major cause of stroke and dementia.


Assuntos
Adenosina Trifosfatases , Doenças de Pequenos Vasos Cerebrais , Hipertensão , Proteínas de Membrana Transportadoras , Acidente Vascular Cerebral , Substância Branca , Animais , Humanos , Ratos , Adenosina Trifosfatases/metabolismo , Encéfalo/patologia , Doenças de Pequenos Vasos Cerebrais/patologia , Hipertensão/complicações , Hipertensão/genética , Hipertensão/metabolismo , Imageamento por Ressonância Magnética , Proteínas de Membrana Transportadoras/metabolismo , Acidente Vascular Cerebral/patologia , Substância Branca/patologia
4.
Nat Cardiovasc Res ; 1(12): 1156-1173, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936984

RESUMO

Vascular endothelial (VE)-cadherin in endothelial adherens junctions is an essential component of the vascular barrier, critical for tissue homeostasis and implicated in diseases such as cancer and retinopathies. Inhibitors of Src cytoplasmic tyrosine kinase have been applied to suppress VE-cadherin tyrosine phosphorylation and prevent excessive leakage, edema and high interstitial pressure. Here we show that the Src-related Yes tyrosine kinase, rather than Src, is localized at endothelial cell (EC) junctions where it becomes activated in a flow-dependent manner. EC-specific Yes1 deletion suppresses VE-cadherin phosphorylation and arrests VE-cadherin at EC junctions. This is accompanied by loss of EC collective migration and exaggerated agonist-induced macromolecular leakage. Overexpression of Yes1 causes ectopic VE-cadherin phosphorylation, while vascular leakage is unaffected. In contrast, in EC-specific Src-deficiency, VE-cadherin internalization is maintained, and leakage is suppressed. In conclusion, Yes-mediated phosphorylation regulates constitutive VE-cadherin turnover, thereby maintaining endothelial junction plasticity and vascular integrity.

5.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34140409

RESUMO

The tumor microenvironment is abnormal and associated with tumor tissue hypoxia, immunosuppression, and poor response to treatment. One important abnormality present in tumors is vessel compression. Vessel decompression has been shown to increase survival rates in animal models via enhanced and more homogeneous oxygenation. However, our knowledge of the biophysical mechanisms linking tumor decompression to improved tumor oxygenation is limited. In this study, we propose a computational model to investigate the impact of vessel compression on red blood cell (RBC) dynamics in tumor vascular networks. Our results demonstrate that vessel compression can alter RBC partitioning at bifurcations in a hematocrit-dependent and flow rate-independent manner. We identify RBC focusing due to cross-streamline migration as the mechanism responsible and characterize the spatiotemporal recovery dynamics controlling downstream partitioning. Based on this knowledge, we formulate a reduced-order model that will help future research to elucidate how these effects propagate at a whole vascular network level. These findings contribute to the mechanistic understanding of hemodilution in tumor vascular networks and oxygen homogenization following pharmacological solid tumor decompression.


Assuntos
Vasos Sanguíneos/patologia , Eritrócitos/patologia , Hematócrito , Neoplasias/sangue , Neoplasias/irrigação sanguínea , Simulação por Computador , Humanos , Modelos Biológicos , Fluxo Sanguíneo Regional
6.
Proc Natl Acad Sci U S A ; 117(45): 27811-27819, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33109723

RESUMO

Oxygen heterogeneity in solid tumors is recognized as a limiting factor for therapeutic efficacy. This heterogeneity arises from the abnormal vascular structure of the tumor, but the precise mechanisms linking abnormal structure and compromised oxygen transport are only partially understood. In this paper, we investigate the role that red blood cell (RBC) transport plays in establishing oxygen heterogeneity in tumor tissue. We focus on heterogeneity driven by network effects, which are challenging to observe experimentally due to the reduced fields of view typically considered. Motivated by our findings of abnormal vascular patterns linked to deviations from current RBC transport theory, we calculated average vessel lengths [Formula: see text] and diameters [Formula: see text] from tumor allografts of three cancer cell lines and observed a substantial reduction in the ratio [Formula: see text] compared to physiological conditions. Mathematical modeling reveals that small values of the ratio λ (i.e., [Formula: see text]) can bias hematocrit distribution in tumor vascular networks and drive heterogeneous oxygenation of tumor tissue. Finally, we show an increase in the value of λ in tumor vascular networks following treatment with the antiangiogenic cancer agent DC101. Based on our findings, we propose λ as an effective way of monitoring the efficacy of antiangiogenic agents and as a proxy measure of perfusion and oxygenation in tumor tissue undergoing antiangiogenic treatment.


Assuntos
Circulação Sanguínea/fisiologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Inibidores da Angiogênese/uso terapêutico , Animais , Biomarcadores Tumorais/fisiologia , Linhagem Celular Tumoral , Eritrócitos/metabolismo , Heterogeneidade Genética , Hematócrito , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Modelos Teóricos , Neoplasias/tratamento farmacológico , Oxigênio/metabolismo , Perfusão
7.
J Open Source Softw ; 5(47): 1848, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37192932

RESUMO

Chaste (Cancer, Heart And Soft Tissue Environment) is an open source simulation package for the numerical solution of mathematical models arising in physiology and biology. To date, Chaste development has been driven primarily by applications that include continuum modelling of cardiac electrophysiology ('Cardiac Chaste'), discrete cell-based modelling of soft tissues ('Cell-based Chaste'), and modelling of ventilation in lungs ('Lung Chaste'). Cardiac Chaste addresses the need for a high-performance, generic, and verified simulation framework for cardiac electrophysiology that is freely available to the scientific community. Cardiac chaste provides a software package capable of realistic heart simulations that is efficient, rigorously tested, and runs on HPC platforms. Cell-based Chaste addresses the need for efficient and verified implementations of cell-based modelling frameworks, providing a set of extensible tools for simulating biological tissues. Computational modelling, along with live imaging techniques, plays an important role in understanding the processes of tissue growth and repair. A wide range of cell-based modelling frameworks have been developed that have each been successfully applied in a range of biological applications. Cell-based Chaste includes implementations of the cellular automaton model, the cellular Potts model, cell-centre models with cell representations as overlapping spheres or Voronoi tessellations, and the vertex model. Lung Chaste addresses the need for a novel, generic and efficient lung modelling software package that is both tested and verified. It aims to couple biophysically-detailed models of airway mechanics with organ-scale ventilation models in a package that is freely available to the scientific community. Chaste is designed to be modular and extensible, providing libraries for common scientific computing infrastructure such as linear algebra operations, finite element meshes, and ordinary and partial differential equation solvers. This infrastructure is used by libraries for specific applications, such as continuum mechanics, cardiac models, and cell-based models. The software engineering techniques used to develop Chaste are intended to ensure code quality, re-usability and reliability. Primary applications of the software include cardiac and respiratory physiology, cancer and developmental biology.

8.
Proc Natl Acad Sci U S A ; 115(37): E8717-E8726, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150398

RESUMO

Blood-brain/blood-tumor barriers (BBB and BTB) and interstitial transport may constitute major obstacles to the transport of therapeutics in brain tumors. In this study, we examined the impact of focused ultrasound (FUS) in combination with microbubbles on the transport of two relevant chemotherapy-based anticancer agents in breast cancer brain metastases at cellular resolution: doxorubicin, a nontargeted chemotherapeutic, and ado-trastuzumab emtansine (T-DM1), an antibody-drug conjugate. Using an orthotopic xenograft model of HER2-positive breast cancer brain metastasis and quantitative microscopy, we demonstrate significant increases in the extravasation of both agents (sevenfold and twofold for doxorubicin and T-DM1, respectively), and we provide evidence of increased drug penetration (>100 vs. <20 µm and 42 ± 7 vs. 12 ± 4 µm for doxorubicin and T-DM1, respectively) after the application of FUS compared with control (non-FUS). Integration of experimental data with physiologically based pharmacokinetic (PBPK) modeling of drug transport reveals that FUS in combination with microbubbles alleviates vascular barriers and enhances interstitial convective transport via an increase in hydraulic conductivity. Experimental data demonstrate that FUS in combination with microbubbles enhances significantly the endothelial cell uptake of the small chemotherapeutic agent. Quantification with PBPK modeling reveals an increase in transmembrane transport by more than two orders of magnitude. PBPK modeling indicates a selective increase in transvascular transport of doxorubicin through small vessel wall pores with a narrow range of sizes (diameter, 10-50 nm). Our work provides a quantitative framework for the optimization of FUS-drug combinations to maximize intratumoral drug delivery and facilitate the development of strategies to treat brain metastases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Ado-Trastuzumab Emtansina , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Humanos , Maitansina/administração & dosagem , Maitansina/análogos & derivados , Maitansina/farmacocinética , Camundongos , Microbolhas , Trastuzumab/administração & dosagem , Trastuzumab/farmacocinética , Ultrassonografia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
PLoS Comput Biol ; 9(3): e1002970, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516352

RESUMO

Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to 're-invent the wheel' with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Simulação por Computador , Humanos , Modelos Cardiovasculares , Neoplasias
10.
Br J Pharmacol ; 168(3): 718-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22946617

RESUMO

BACKGROUND AND PURPOSE: Understanding drug effects on the heart is key to safety pharmacology assessment and anti-arrhythmic therapy development. Here our goal is to demonstrate the ability of computational models to simulate the effect of drug action on the electrical activity of the heart, at the level of the ion-channel, cell, heart and ECG body surface potential. EXPERIMENTAL APPROACH: We use the state-of-the-art mathematical models governing the electrical activity of the heart. A drug model is introduced using an ion channel conductance block for the hERG and fast sodium channels, depending on the IC(50) value and the drug dose. We simulate the ECG measurements at the body surface and compare biomarkers under different drug actions. KEY RESULTS: Introducing a 50% hERG-channel current block results in 8% prolongation of the APD(90) and 6% QT interval prolongation, hERG block does not affect the QRS interval. Introducing 50% fast sodium current block prolongs the QRS and the QT intervals by 12% and 5% respectively, and delays activation times, whereas APD(90) is not affected. CONCLUSIONS AND IMPLICATIONS: Both potassium and sodium blocks prolong the QT interval, but the underlying mechanism is different: for potassium it is due to APD prolongation; while for sodium it is due to a reduction of electrical wave velocity. This study shows the applicability of in silico models for the investigation of drug effects on the heart, from the ion channel to the ECG-based biomarkers.


Assuntos
Coração/efeitos dos fármacos , Modelos Biológicos , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Simulação por Computador , Eletrocardiografia , Canais de Potássio Éter-A-Go-Go/fisiologia , Coração/fisiologia , Humanos , Canais de Sódio/fisiologia
11.
Philos Trans A Math Phys Eng Sci ; 367(1895): 1907-30, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19380318

RESUMO

Recent work has described the software engineering and computational infrastructure that has been set up as part of the Cancer, Heart and Soft Tissue Environment (CHASTE) project. CHASTE is an open source software package that currently has heart and cancer modelling functionality. This software has been written using a programming paradigm imported from the commercial sector and has resulted in a code that has been subject to a far more rigorous testing procedure than that is usual in this field. In this paper, we explain how new functionality may be incorporated into CHASTE. Whiteley has developed a numerical algorithm for solving the bidomain equations that uses the multi-scale (MS) nature of the physiology modelled to enhance computational efficiency. Using a simple geometry in two dimensions and a purpose-built code, this algorithm was reported to give an increase in computational efficiency of more than two orders of magnitude. In this paper, we begin by reviewing numerical methods currently in use for solving the bidomain equations, explaining how these methods may be developed to use the MS algorithm discussed above. We then demonstrate the use of this algorithm within the CHASTE framework for solving the monodomain and bidomain equations in a three-dimensional realistic heart geometry. Finally, we discuss how CHASTE may be developed to include new physiological functionality--such as modelling a beating heart and fluid flow in the heart--and how new algorithms aimed at increasing the efficiency of the code may be incorporated.


Assuntos
Algoritmos , Biologia Computacional , Modelos Biológicos , Gráficos por Computador , Interface Usuário-Computador
12.
Philos Trans A Math Phys Eng Sci ; 366(1878): 3111-36, 2008 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-18565813

RESUMO

Cardiac modelling is the area of physiome modelling where the available simulation software is perhaps most mature, and it therefore provides an excellent starting point for considering the software requirements for the wider physiome community. In this paper, we will begin by introducing some of the most advanced existing software packages for simulating cardiac electrical activity. We consider the software development methods used in producing codes of this type, and discuss their use of numerical algorithms, relative computational efficiency, usability, robustness and extensibility. We then go on to describe a class of software development methodologies known as test-driven agile methods and argue that such methods are more suitable for scientific software development than the traditional academic approaches. A case study is a project of our own, Cancer, Heart and Soft Tissue Environment, which is a library of computational biology software that began as an experiment in the use of agile programming methods. We present our experiences with a review of our progress thus far, focusing on the advantages and disadvantages of this new approach compared with the development methods used in some existing packages. We conclude by considering whether the likely wider needs of the cardiac modelling community are currently being met and suggest that, in order to respond effectively to changing requirements, it is essential that these codes should be more malleable. Such codes will allow for reliable extensions to include both detailed mathematical models--of the heart and other organs--and more efficient numerical techniques that are currently being developed by many research groups worldwide.


Assuntos
Biologia Computacional/estatística & dados numéricos , Simulação por Computador , Modelos Cardiovasculares , Software , Sistemas Computacionais , Eletrofisiologia , Coração/fisiologia , Humanos , Linguagens de Programação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA