Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cancer Genomics Proteomics ; 19(3): 339-349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35430567

RESUMO

BACKGROUND/AIM: Histone methylation status is required to control gene expression. H3K27me3 is an epigenetic tri-methylation modification to histone H3 controlled by the demethylase JMJD3. JMJD3 is dysregulated in a wide range of cancers and has been shown to control the expression of a specific growth-modulatory gene signature, making it an interesting candidate to better understand prostate tumor progression in vivo. This study aimed to identify the impact of JMJD3 inhibition by its inhibitor, GSK4, on prostate tumor growth in vivo. MATERIALS AND METHODS: Prostate cancer cell lines were implanted into Balb/c nude male mice. The effects of the selective JMJD3 inhibitor GSK-J4 on tumor growth were analyzed by bioluminescence assays and H3K27me3-regulated changes in gene expression were analyzed by ChIP-qPCR and RT-qPCR. RESULTS: JMJD3 inhibition contributed to an increase in tumor growth in androgen-independent (AR-) xenografts and a decrease in androgen-dependent (AR+). GSK-J4 treatment modulated H3K27me3 enrichment on the gene panel in DU-145-luc xenografts while it had little effect on PC3-luc and no effect on LNCaP-luc. Effects of JMJD3 inhibition affected the panel gene expression. CONCLUSION: JMJD3 has a differential effect in prostate tumor progression according to AR status. Our results suggest that JMJD3 is able to play a role independently of its demethylase function in androgen-independent prostate cancer. The effects of GSK-J4 on AR+ prostate xenografts led to a decrease in tumor growth.


Assuntos
Benzazepinas , Histona Desmetilases com o Domínio Jumonji , Neoplasias da Próstata , Pirimidinas , Animais , Benzazepinas/farmacologia , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478063

RESUMO

Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the tri methylation of lysine from histone 3 (H3K27me3) mark, a repressive epigenetic mark often under- or overexpressed in a wide range of cancers. Two actors regulate H3K27 methylation: Jumonji Domain-Containing Protein 3 demethylase (JMJD3) and Enhancer of zeste homolog 2 (EZH2) methyltransferase. A number of studies have highlighted the deregulation of these actors, which is why this scientific review will focus on the role of JMJD3 and, consequently, H3K27me3 in cancer development. Data on JMJD3's involvement in cancer are classified by cancer type: nervous system, prostate, blood, colorectal, breast, lung, liver, ovarian, and gastric cancers.


Assuntos
Histona Desmetilases com o Domínio Jumonji/fisiologia , Neoplasias/genética , Animais , Metilação de DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Epigênese Genética/genética , Feminino , Histona Desmetilases/fisiologia , Histonas/metabolismo , Humanos , Masculino , Neoplasias/metabolismo , Neoplasias/patologia
5.
Cancer Genomics Proteomics ; 17(6): 687-694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33099470

RESUMO

BACKGROUND/AIM: In breast cancer, initiation of carcinogenesis leads to epigenetic dysregulation, which can lead for example to the loss of the heterochromatin skeleton SUV39H1/H3K9me3/HP1 or the supposed secondary skeleton TIP60/P400/H4K12ac/BRD (2/4), which allows the maintenance of chromatin integrity and plasticity. This study investigated the relationship between TIP60, P400 and H4K12ac and their implications in breast tumors. MATERIALS AND METHODS: Seventy-seven patients diagnosed with breast cancer were included in this study. Chromatin immunoprecipitation (ChIP) assay was used to identify chromatin modifications. Western blot and reverse transcription and quantitative real-time PCR were used to determine protein and gene expression, respectively. RESULTS: We verified the variation in H4K12ac enrichment and the co-localization of H4K12ac and TIP60 on the euchromatin and heterochromatin genes, respectively, by ChIP-qPCR and ChIP-reChIP, which showed an enrichment of H4K12ac on specific genes in tumors compared to the adjacent healthy tissue and a co-localization of H4K12ac with TIP60 in different breast tumor types. Furthermore, RNA and protein expression of TIP60 and P400 was investigated and overexpression of TIP60 and P400 mRNA was associated with tumor aggressiveness. CONCLUSION: There is a potential interaction between H4K12ac and TIP60 in heterochromatin or euchromatin in breast tumors.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Lisina Acetiltransferase 5/metabolismo , Acetilação , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cromatina , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Feminino , Heterocromatina , Histonas/genética , Humanos , Lisina Acetiltransferase 5/genética , Pessoa de Meia-Idade , Prognóstico
6.
OMICS ; 24(10): 581-591, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32960142

RESUMO

Breast cancer is often sporadic due to several factors. Among them, the deregulation of epigenetic proteins may be involved. TIP60 or KAT5 is an acetyltransferase that regulates gene transcription through the chromatin structure. This pleiotropic protein acts in several cellular pathways by acetylating proteins. RNA and protein expressions of TIP60 were shown to decrease in some breast cancer subtypes, particularly in triple-negative breast cancer (TNBC), where a low expression of TIP60 was exhibited compared with luminal subtypes. In this study, the inhibition of the residual activity of TIP60 in breast cancer cell lines was investigated by using two chemical inhibitors, TH1834 and NU9056, first on the acetylation of the specific target, lysine 4 of histone 3 (H3K4) by immunoblotting, and second, by chromatin immunoprecipitation (ChIP)-qPCR (-quantitative Polymerase Chain Reaction). Subsequently, significant decreases or a trend toward decrease of H3K4ac in the different chromatin compartments were observed. In addition, the expression of 48 human nuclear receptors was studied with TaqMan Low-Density Array in these breast cancer cell lines treated with TIP60 inhibitors. The statistical analysis allowed us to comprehensively characterize the androgen receptor and NR3C2 receptors in TNBC cell lines after TH1834 or NU9056 treatment. The understanding of the residual activity of TIP60 in the evolution of breast cancer might be a major asset in the fight against this disease, and could allow TIP60 to be used as a biomarker or therapeutic target for breast cancer progression in the future.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Epigênese Genética , Epigenômica , Lisina Acetiltransferase 5/metabolismo , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sequenciamento de Cromatina por Imunoprecipitação , Epigenômica/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5/antagonistas & inibidores , Ligação Proteica
8.
Epigenomics ; 12(8): 725-742, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32396394

RESUMO

Triple-negative breast cancer (TNBC) types with poor prognosis are due to the absence of estrogen receptors, progesterone receptors and HEGFR-2. The lack of suitable therapy for TNBC has led the research community to turn toward epigenetic regulation and its protagonists that can modulate certain oncogenes and tumor suppressors. This has opened an important new field of therapy using epi-drugs, in preclinical and clinical trials. The epi-drugs are natural or synthetic molecules capable of inhibiting or modulating the activity of epigenetic proteins such as DNA methyltransferases, modulating the expression of interferon microRNAs, as well as histone methyltransferases, demethylases, acetyltransferases and deacetylases. This review investigated the epi-drugs used in the treatment of TNBC.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/etiologia , Animais , Antineoplásicos/farmacologia , Metilação de DNA/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Metiltransferases/metabolismo , Humanos , Terapia de Alvo Molecular , Oncogenes , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
11.
Cancers (Basel) ; 10(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380732

RESUMO

Breast cancer (BC) is the most common type of cancer in women worldwide; it is a multifactorial genetic disease. Acetylation and deacetylation are major post-translational protein modifications that regulate gene expression and the activity of a myriad of oncoproteins. Aberrant deacetylase activity can promote or suppress tumorigenesis and cancer metastasis in different types of human cancers, including breast cancer. Sirtuin-1 (SIRT1) is a class-III histone deacetylase (HDAC) that deacetylates both histone and non-histone targets. The often-described 'regulator of regulators' is deeply implicated in apoptosis, gene regulation, genome maintenance, DNA repair, aging, and cancer development. However, despite the accumulated studies over the past decade, the role of SIRT1 in human breast cancer remains a subject of debate and controversy. The ambiguity surrounding the implications of SIRT1 in breast tumorigenesis stems from the discrepancy between studies, which have shown both tumor-suppressive and promoting functions of SIRT1. Furthermore, studies have shown that SIRT1 deficiency promotes or suppresses tumors in breast cancer, making it an attractive therapeutic target in cancer treatment. This review provides a comprehensive examination of the various implications of SIRT1 in breast cancer development and metastasis. We will also discuss the mechanisms underlying the conflicting roles of SIRT1, as well as its selective modulators, in breast carcinogenesis.

12.
Epigenomics ; 10(11): 1415-1430, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30324811

RESUMO

AIM: The acetyltransferase TIP60 is reported to be downregulated in several cancers, in particular breast cancer, but the molecular mechanisms resulting from its alteration are still unclear. MATERIALS & METHODS: In breast tumors, H3K4ac enrichment and its link with TIP60 were evaluated by chromatin immunoprecipitation-qPCR and re-chromatin immunoprecipitation techniques. To assess the biological roles of TIP60 in breast cancer, two cell lines of breast cancer, MDA-MB-231 (ER-) and MCF-7 (ER+) were transfected with shRNA specifically targeting TIP60 and injected to athymic Balb-c mice. RESULTS: We identified a potential target of TIP60, H3K4. We show that an underexpression of TIP60 could contribute to a reduction of H3K4 acetylation in breast cancer. An increase in tumor development was noted in sh-TIP60 MDA-MB-231 xenografts and a slowdown of tumor growth in sh-TIP60 MCF-7 xenografts. CONCLUSION: This is evidence that the underexpression of TIP60 observed in breast cancer can promote the tumorigenesis of ER-negative tumors.


Assuntos
Neoplasias da Mama/genética , Código das Histonas , Histonas/metabolismo , Lisina Acetiltransferase 5/metabolismo , Acetilação , Animais , Neoplasias da Mama/metabolismo , Feminino , Humanos , Lisina Acetiltransferase 5/genética , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
13.
Oncotarget ; 9(55): 30661-30678, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30093977

RESUMO

Breast cancer is the most frequently diagnosed malignancy in women worldwide. It is well established that the complexity of carcinogenesis involves profound epigenetic deregulations that contribute to the tumorigenesis process. Deregulated H3 and H4 acetylated histone marks are amongst those alterations. Sirtuin-1 (SIRT1) is a class-III histone deacetylase deeply involved in apoptosis, genomic stability, gene expression regulation and breast tumorigenesis. However, the underlying molecular mechanism by which SIRT1 regulates H3 and H4 acetylated marks, and consequently cancer-related gene expression in breast cancer, remains uncharacterized. In this study, we elucidated SIRT1 epigenetic role and analyzed the link between the latter and histones H3 and H4 epigenetic marks in all 5 molecular subtypes of breast cancer. Using a cohort of 135 human breast tumors and their matched normal tissues, as well as 5 human-derived cell lines, we identified H3k4ac as a new prime target of SIRT1 in breast cancer. We also uncovered an inverse correlation between SIRT1 and the 3 epigenetic marks H3k4ac, H3k9ac and H4k16ac expression patterns. We showed that SIRT1 modulates the acetylation patterns of histones H3 and H4 in breast cancer. Moreover, SIRT1 regulates its H3 acetylated targets in a subtype-specific manner. Furthermore, SIRT1 siRNA-mediated knockdown increases histone acetylation levels at 6 breast cancer-related gene promoters: AR, BRCA1, ERS1, ERS2, EZH2 and EP300. In summary, this report characterizes for the first time the epigenetic behavior of SIRT1 in human breast carcinoma. These novel findings point to a potential use of SIRT1 as an epigenetic therapeutic target in breast cancer.

15.
Oncotarget ; 9(34): 23413-23425, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29805743

RESUMO

Histone methylation is essential for gene expression control. Trimethylated lysine 27 of histone 3 (H3K27me3) is controlled by the balance between the activities of JMJD3 demethylase and EZH2 methyltransferase. This epigenetic mark has been shown to be deregulated in prostate cancer, and evidence shows H3K27me3 enrichment on gene promoters in prostate cancer. To study the impact of this enrichment, a transcriptomic analysis with TaqMan Low Density Array (TLDA) of several genes was studied on prostate biopsies divided into three clinical grades: normal (n = 23) and two tumor groups that differed in their aggressiveness (Gleason score ≤ 7 (n = 20) and >7 (n = 19)). ANOVA demonstrated that expression of the gene set was upregulated in tumors and correlated with Gleason score, thus discriminating between the three clinical groups. Six genes involved in key cellular processes stood out: JMJD3, EZH2, MGMT, TRA2A, U2AF1 and RPS6KA2. Chromatin immunoprecipitation demonstrated collocation of EZH2 and JMJD3 on gene promoters that was dependent on disease stage. Gene set expression was also evaluated on prostate cancer cell lines (DU 145, PC-3 and LNCaP) treated with an inhibitor of JMJD3 (GSK-J4) or EZH2 (DZNeP) to study their involvement in gene regulation. Results showed a difference in GSK-J4 sensitivity under PTEN status of cell lines and an opposite gene expression profile according to androgen status of cells. In summary, our data describe the impacts of JMJD3 and EZH2 on a new gene signature involved in prostate cancer that may help identify diagnostic and therapeutic targets in prostate cancer.

19.
Sci Rep ; 7(1): 6597, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747748

RESUMO

Breast cancer is a heterogeneous disease due to its clinico-pathological features and response to therapy. The classification of breast tumors based on their hormone receptor status and pathologic features. Post-translational histone modifications come into prominence for regulation of gene expression in cancer pathogenesis. Here, we analyzed dysregulation of H3K9ac and H3K27me3-enriched subtype-specific genes using ChIP-on-chip assay in breast cancer tumors and matched normal tissue samples. Breast cancer tumors were classified according to St Gallen Consensus 2013. Our results indicated that the promoter regions of genes modified by H3K9ac epi-mark are commonly associated with tumors with HER2-positive and TNBC subtype. H3K27me3-enriched genes were comprised of Luminal A and B1 subtypes. We constructed a network structure to elicit epigenetically regulated genes related with breast cancer progression. The central genes of the network (RUNX1, PAX3, GATA4 and DLX5) were subjected for epigenetically dysregulation in association with different breast cancer subtypes. Our study submits epigenetic mechanisms are crucial to elicit subtype-specific regulation in breast cancer and ChIP-on-chip assay provides a better understanding for breast tumorigenesis and new approaches for prevention and treatment.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Epigênese Genética , Histonas/análise , Regiões Promotoras Genéticas , Acetilação , Feminino , Redes Reguladoras de Genes , Humanos , Metilação , Processamento de Proteína Pós-Traducional
20.
BMC Cancer ; 17(1): 261, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28403887

RESUMO

BACKGROUND: H3K27me3 histone marks shape the inhibition of gene transcription. In prostate cancer, the deregulation of H3K27me3 marks might play a role in prostate tumor progression. METHODS: We investigated genome-wide H3K27me3 histone methylation profile using chromatin immunoprecipitation (ChIP) and 2X400K promoter microarrays to identify differentially-enriched regions in biopsy samples from prostate cancer patients. H3K27me3 marks were assessed in 34 prostate tumors: 11 with Gleason score > 7 (GS > 7), 10 with Gleason score ≤ 7 (GS ≤ 7), and 13 morphologically normal prostate samples. RESULTS: Here, H3K27me3 profiling identified an average of 386 enriched-genes on promoter regions in healthy control group versus 545 genes in GS ≤ 7 and 748 genes in GS > 7 group. We then ran a factorial discriminant analysis (FDA) and compared the enriched genes in prostate-tumor biopsies and normal biopsies using ANOVA to identify significantly differentially-enriched genes. The analysis identified ALG5, EXOSC8, CBX1, GRID2, GRIN3B, ING3, MYO1D, NPHP3-AS1, MSH6, FBXO11, SND1, SPATS2, TENM4 and TRA2A genes. These genes are possibly associated with prostate cancer. Notably, the H3K27me3 histone mark emerged as a novel regulatory mechanism in poor-prognosis prostate cancer. CONCLUSIONS: Our findings point to epigenetic mark H3K27me3 as an important event in prostate carcinogenesis and progression. The results reported here provide new molecular insights into the pathogenesis of prostate cancer.


Assuntos
Metilação de DNA , Redes Reguladoras de Genes , Histonas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Neoplasias da Próstata/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Homólogo 5 da Proteína Cromobox , Análise Discriminante , Progressão da Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA