Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Hepatol ; 75(3): 506-513, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33774058

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disorder resulting from genetic and environmental factors. Hyperferritinemia has been associated with increased hepatic iron stores and worse outcomes in patients with NAFLD. The aim of this study was to evaluate the prevalence of variants of iron-related genes and their association with hyperferritinemia, hepatic iron stores and liver disease severity in patients with NAFLD. METHODS: From a cohort of 328 individuals with histological NAFLD, 23 patients with ferritin >750 ng/ml and positive iron staining, and 25 controls with normal ferritin and negative iron staining, were selected. Patients with increased transferrin saturation, anemia, inflammation, ß-thalassemia trait, HFE genotype at risk of iron overload and ferroportin mutations were excluded. A panel of 32 iron genes was re-sequenced. Literature and in silico predictions were employed for prioritization of pathogenic mutations. RESULTS: Patients with hyperferritinemia had a higher prevalence of potentially pathogenic rare variants (73.9% vs. 20%, p = 0.0002) associated with higher iron stores and more severe liver fibrosis (p <0.05). Ceruloplasmin was the most mutated gene and its variants were independently associated with hyperferritinemia, hepatic siderosis, and more severe liver fibrosis (p <0.05). In the overall cohort, ceruloplasmin variants were independently associated with hyperferritinemia (adjusted odds ratio 5.99; 95% CI 1.83-19.60; p = 0.0009). CONCLUSIONS: Variants in non-HFE iron genes, particularly ceruloplasmin, are associated with hyperferritinemia and increased hepatic iron stores in patients with NAFLD. Carriers of such variants have more severe liver fibrosis, suggesting that genetic predisposition to hepatic iron deposition may translate into liver disease. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is a common disease which can progress to cirrhosis and liver cancer. Increased levels of serum ferritin are often detected in patients with NAFLD and have been associated with altered iron metabolism and worse patient outcomes. We found that variants of genes related to iron metabolism, particularly ceruloplasmin, are associated with high ferritin levels, hepatic iron deposition and more severe liver disease in an Italian cohort of patients with NAFLD.


Assuntos
Ceruloplasmina/genética , Hiperferritinemia/diagnóstico , Fígado/química , Hepatopatia Gordurosa não Alcoólica/complicações , Idoso , Estudos de Coortes , Feminino , Variação Genética/genética , Humanos , Hiperferritinemia/patologia , Ferro/análise , Sobrecarga de Ferro/metabolismo , Fígado/fisiopatologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/fisiopatologia
2.
Oncotarget ; 9(60): 31606-31619, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30167082

RESUMO

The standard of care for breast cancer has gradually evolved from empirical treatments based on clinical-pathological characteristics to the use of targeted approaches based on the molecular profile of the tumor. Consequently, an increasing number of molecularly targeted drugs have been developed. These drugs target specific alterations, called driver mutations, which confer a survival advantage to cancer cells. To date, the main challenge remains the identification of predictive biomarkers for the selection of the optimal treatment. On this basis, we evaluated a panel of 25 genes involved in the mechanisms of targeted treatment resistance, in 16 primary breast cancers and their matched recurrences, developed during treatment. Overall, we found a detection rate of mutations higher than that described in the literature. In particular, the most frequently mutated genes were ERBB2 and those involved in the PI3K/AKT/mTOR and the MAPK signaling pathways. The study revealed substantial discordances between primary tumors and metastases, stressing the need for analysis of metastatic tissues at recurrence. We observed that 85.7% of patients with an early-stage or locally advanced primary tumor showed at least one mutation in the primary tumor. This finding could explain the subsequent relapse and might therefore justify more targeted adjuvant treatments. Finally, the mutations detected in 50% of relapsed tissues could have guided subsequent treatment choices in a different way. This study demonstrates that mutation events may be present at diagnosis or arise during cancer treatment. As a result, profiling primary and metastatic tumor tissues may be a major step in defining optimal treatments.

3.
Am J Hematol ; 91(7): 681-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27037840

RESUMO

Transformation to secondary myelofibrosis (MF) occurs as part of the natural history of polycythemia vera (PPV-MF) and essential thrombocythemia (PET-MF). Although primary (PMF) and secondary MF are considered similar diseases and managed similarly, there are few studies specifically focused on the latter. The aim of this study was to characterize the mutation landscape, and describe the main clinical correlates and prognostic implications of mutations, in a series of 359 patients with PPV-MF and PET-MF. Compared with PV and ET, the JAK2V617F and CALR mutated allele burden was significantly higher in PPV-MF and/or PET-MF, indicating a role for accumulation of mutated alleles in the process of transformation to MF. However, neither the allele burden nor the type of driver mutation influenced overall survival (OS), while absence of any driver mutation (triple negativity) was associated with significant reduction of OS in PET-MF, similar to PMF. Of the five interrogated subclonal mutations (ASXL1, EZH2, SRSF2, IDH1, and IDH2), that comprise a prognostically detrimental high molecular risk (HMR) category in PMF, only SRSF2 mutations were associated with reduced survival in PET-MF, and no additional mutation profile with prognostic relevance was highlighted. Overall, these data indicate that the molecular landscape of secondary forms of MF is different from PMF, suggesting that unknown mutational events might contribute to the progression from chronic phase disease to myelofibrosis. These findings also support more extended genotyping approaches aimed at identifying novel molecular abnormalities with prognostic relevance for patients with PPV-MF and PET-MF. Am. J. Hematol. 91:681-686, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Mutação , Transtornos Mieloproliferativos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/epidemiologia , Transtornos Mieloproliferativos/mortalidade , Transtornos Mieloproliferativos/patologia , Policitemia Vera/genética , Policitemia Vera/mortalidade , Policitemia Vera/patologia , Mielofibrose Primária/epidemiologia , Mielofibrose Primária/etiologia , Mielofibrose Primária/genética , Mielofibrose Primária/mortalidade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Trombocitemia Essencial/genética , Trombocitemia Essencial/mortalidade , Trombocitemia Essencial/patologia
4.
Cell Rep ; 7(4): 1211-26, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24813895

RESUMO

The Ewing sarcoma protein EWS is an RNA and DNA binding protein implicated in transcription, pre-mRNA splicing, and DNA damage response. Using CLIP-seq, we identified EWS RNA binding sites in exonic regions near 5' splice sites. A prominent target was exon 6 of the FAS/CD95 receptor, which is alternatively spliced to generate isoforms with opposing activities in programmed cell death. Depletion and overexpression experiments showed that EWS promotes exon 6 inclusion and consequently the synthesis of the proapoptotic FAS/CD95 isoform, whereas an EWS-FLI1 fusion protein characteristic of Ewing sarcomas shows decreased activity. Biochemical analyses revealed that EWS binding promotes the recruitment of U1snRNP and U2AF65 to the splice sites flanking exon 6 and therefore exon definition. Consistent with a role for EWS in the regulation of programmed cell death, cells depleted of EWS show decreased sensitivity to FAS-induced apoptosis, and elevated EWS expression enhances apoptosis in EWS-haploinsufficient Ewing sarcoma cells.


Assuntos
Apoptose/genética , Éxons , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Receptor fas/genética , Processamento Alternativo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/metabolismo , Transdução de Sinais
5.
Blood ; 123(14): 2157-60, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24458439

RESUMO

The JAK1/JAK2 inhibitor ruxolitinib produced significant reductions in splenomegaly and symptomatic burden and improved survival in patients with myelofibrosis (MF), irrespective of their JAK2 mutation status, in 2 phase III studies against placebo (COMFORT-I) and best available therapy (COMFORT-II). We performed a comprehensive mutation analysis to evaluate the impact of 14 MF-associated mutations on clinical outcomes in 166 patients included in COMFORT-II. We found that responses in splenomegaly and symptoms, as well as the risk of developing ruxolitinib-associated anemia and thrombocytopenia, occurred at similar frequencies across different mutation profiles. Ruxolitinib improved survival independent of mutation profile and reduced the risk of death in patients harboring a set of prognostically detrimental mutations (ASXL1, EZH2, SRSF2, IDH1/2) with an hazard ratio of 0.57 (95% confidence interval: 0.30-1.08) vs best available therapy. These data indicate that clinical efficacy and survival improvement may occur across different molecular subsets of patients with MF treated with ruxolitinib.


Assuntos
Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Análise Mutacional de DNA , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Isocitrato Desidrogenase/genética , Janus Quinase 1/genética , Janus Quinase 2/genética , Mutação , Nitrilas , Proteínas Nucleares/genética , Complexo Repressor Polycomb 2/genética , Mielofibrose Primária/mortalidade , Prognóstico , Pirimidinas , Proteínas Repressoras/genética , Ribonucleoproteínas/genética , Fatores de Processamento de Serina-Arginina , Resultado do Tratamento
6.
Mol Cell ; 52(5): 720-33, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24332178

RESUMO

RBM5, a regulator of alternative splicing of apoptotic genes, and its highly homologous RBM6 and RBM10 are RNA-binding proteins frequently deleted or mutated in lung cancer. We report that RBM5/6 and RBM10 antagonistically regulate the proliferative capacity of cancer cells and display distinct positional effects in alternative splicing regulation. We identify the Notch pathway regulator NUMB as a key target of these factors in the control of cell proliferation. NUMB alternative splicing, which is frequently altered in lung cancer, can regulate colony and xenograft tumor formation, and its modulation recapitulates or antagonizes the effects of RBM5, 6, and 10 in cell colony formation. RBM10 mutations identified in lung cancer cells disrupt NUMB splicing regulation to promote cell growth. Our results reveal a key genetic circuit in the control of cancer cell proliferation.


Assuntos
Processamento Alternativo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Proteínas Supressoras de Tumor/genética , Animais , Sítios de Ligação , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células MCF-7 , Camundongos , Camundongos Nus , RNA/genética , Receptores Notch/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA