Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 22(21): 6270-87, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25245673

RESUMO

Novel cationic dimethylaminopyridine derivatives of pentacyclic triterpenes were previously described to promote mitochondrial depolarization and cell death in breast and melanoma cell lines. The objective of this work was to further investigate in detail the mechanism of mitochondrial perturbations, correlating those effects with breast cancer cell responses to those same agents. Initially, a panel of tumor and non-tumor cell lines was grown in high-glucose or glucose-free glutamine-containing media, the later forcing cells to synthesize ATP by oxidative phosphorylation only. Cell proliferation, cell cycle, cell death and mitochondrial membrane polarization were evaluated. Inhibition of cell proliferation was observed, accompanied by an arrest in the G1-cell cycle phase, and importantly, by loss of mitochondrial membrane potential. On a later time-point, caspase-9 and 3 activation were observed, resulting in cell death. For the majority of test compounds, we determined that cell toxicity was augmented in the galactose media. To investigate direct evidences on mitochondria isolated rat liver mitochondria were used. The results showed that the compounds were strong inducers of the permeability transition pore. Confirming our previous results, this work shows that the novel DMAP derivatives strongly interact with mitochondria, resulting in pro-apoptotic signaling and cell death.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/patologia , Ratos , Ratos Wistar
2.
Bioorg Med Chem ; 21(23): 7239-49, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24156937

RESUMO

Triterpenoids are a large class of naturally occurring compounds, and some potentially interesting as anticancer agents have been found to target mitochondria. The objective of the present work was to investigate the mechanisms of mitochondrial toxicity induced by novel dimethylaminopyridine (DMAP) derivatives of pentacyclic triterpenes, which were previously shown to inhibit the growth of melanoma cells in vitro. MCF-7, Hs 578T and BJ cell lines, as well as isolated hepatic mitochondria, were used to investigate direct mitochondrial effects. On isolated mitochondrial hepatic fractions, respiratory parameters, mitochondrial transmembrane electric potential, induction of the mitochondrial permeability transition (MPT) pore and ion transport-dependent osmotic swelling were measured. Our results indicate that the DMAP triterpenoid derivatives lead to fragmentation and depolarization of the mitochondrial network in situ, and to inhibition of uncoupled respiration, induction of the permeability transition pore and depolarization of isolated hepatic mitochondria. The results show that mitochondrial toxicity is an important component of the biological interaction of DMAP derivatives, which can explain the effects observed in cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Piridinas/química , Piridinas/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA