Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1393, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360927

RESUMO

Patients affected by neurofibromatosis type 1 (NF1) frequently show muscle weakness with unknown etiology. Here we show that, in mice, Neurofibromin 1 (Nf1) is not required in muscle fibers, but specifically in early postnatal myogenic progenitors (MPs), where Nf1 loss led to cell cycle exit and differentiation blockade, depleting the MP pool resulting in reduced myonuclear accretion as well as reduced muscle stem cell numbers. This was caused by precocious induction of stem cell quiescence coupled to metabolic reprogramming of MPs impinging on glycolytic shutdown, which was conserved in muscle fibers. We show that a Mek/Erk/NOS pathway hypersensitizes Nf1-deficient MPs to Notch signaling, consequently, early postnatal Notch pathway inhibition ameliorated premature quiescence, metabolic reprogramming and muscle growth. This reveals an unexpected role of Ras/Mek/Erk signaling supporting postnatal MP quiescence in concert with Notch signaling, which is controlled by Nf1 safeguarding coordinated muscle growth and muscle stem cell pool establishment. Furthermore, our data suggest transmission of metabolic reprogramming across cellular differentiation, affecting fiber metabolism and function in NF1.


Assuntos
Neurofibromatose 1 , Neurofibromina 1 , Camundongos , Humanos , Animais , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Transdução de Sinais/fisiologia , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
2.
Trends Endocrinol Metab ; 35(6): 518-532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38212233

RESUMO

Tumours are heterogeneous tissues containing diverse populations of cells and an abundant extracellular matrix (ECM). This tumour microenvironment prompts cancer cells to adapt their metabolism to survive and grow. Besides epigenetic factors, the metabolism of cancer cells is shaped by crosstalk with stromal cells and extracellular components. To date, most experimental models neglect the complexity of the tumour microenvironment and its relevance in regulating the dynamics of the metabolism in cancer. We discuss emerging strategies to model cellular and extracellular aspects of cancer metabolism. We highlight cancer models based on bioengineering, animal, and mathematical approaches to recreate cell-cell and cell-matrix interactions and patient-specific metabolism. Combining these approaches will improve our understanding of cancer metabolism and support the development of metabolism-targeting therapies.


Assuntos
Neoplasias , Microambiente Tumoral , Microambiente Tumoral/fisiologia , Humanos , Animais , Neoplasias/metabolismo , Neoplasias/patologia , Matriz Extracelular/metabolismo
3.
Cardiovasc Res ; 119(18): 2902-2916, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37842925

RESUMO

AIMS: Mutation of the PRDM16 gene causes human dilated and non-compaction cardiomyopathy. The PRDM16 protein is a transcriptional regulator that affects cardiac development via Tbx5 and Hand1, thus regulating myocardial structure. The biallelic inactivation of Prdm16 induces severe cardiac dysfunction with post-natal lethality and hypertrophy in mice. The early pathological events that occur upon Prdm16 inactivation have not been explored. METHODS AND RESULTS: This study performed in-depth pathophysiological and molecular analyses of male and female Prdm16csp1/wt mice that carry systemic, monoallelic Prdm16 gene inactivation. We systematically assessed early molecular changes through transcriptomics, proteomics, and metabolomics. Kinetic modelling of cardiac metabolism was performed in silico with CARDIOKIN. Prdm16csp1/wt mice are viable up to 8 months, develop hypoplastic hearts, and diminished systolic performance that is more pronounced in female mice. Prdm16csp1/wt cardiac tissue of both sexes showed reductions in metabolites associated with amino acid as well as glycerol metabolism, glycolysis, and the tricarboxylic acid cycle. Prdm16csp1/wt cardiac tissue revealed diminished glutathione (GSH) and increased inosine monophosphate (IMP) levels indicating oxidative stress and a dysregulated energetics, respectively. An accumulation of triacylglycerides exclusively in male Prdm16csp1/wt hearts suggests a sex-specific metabolic adaptation. Metabolic modelling using CARDIOKIN identified a reduction in fatty acid utilization in males as well as lower glucose utilization in female Prdm16csp1/wt cardiac tissue. On the level of transcripts and protein expression, Prdm16csp1/wt hearts demonstrate an up-regulation of pyridine nucleotide-disulphide oxidoreductase domain 2 (Pyroxd2) and the transcriptional regulator pre-B-cell leukaemia transcription factor interacting protein 1 (Pbxip1). The strongest concordant transcriptional up-regulation was detected for Prdm16 itself, probably through an autoregulatory mechanism. CONCLUSIONS: Monoallelic, global Prdm16 mutation diminishes cardiac performance in Prdm16csp1/wt mice. Metabolic alterations and transcriptional dysregulation in Prdm16csp1/wt affect cardiac tissue. Female Prdm16csp1/wt mice develop a more pronounced phenotype, indicating sexual dimorphism at this early pathological window. This study suggests that metabolic dysregulation is an early event in the PRDM16 associated cardiac pathology.


Assuntos
Cardiomiopatias , Coração , Animais , Feminino , Masculino , Camundongos , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Miocárdio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Caracteres Sexuais
4.
Neoplasia ; 46: 100945, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976569

RESUMO

Obesity and associated nonalcoholic steatohepatitis (NASH) are on the rise globally. NASH became an important driver of hepatocellular carcinoma (HCC) in recent years. Activation of the central metabolic regulator mTOR (mechanistic target of rapamycin) is frequently observed in HCCs. However, mTOR inhibition failed to improve the outcome of HCC therapies, demonstrating the need for a better understanding of the molecular and functional consequences of mTOR blockade. We established a murine NASH-driven HCC model based on long-term western diet feeding combined with hepatocellular mTOR-inactivation. We evaluated tumor load and whole-body fat percentage via µCT-scans, analyzed metabolic blood parameters and tissue proteome profiles. Additionally, we used a bioinformatic model to access liver and HCC mitochondrial metabolic functions. The tumor burden was massively increased via mTOR-knockout. Several signs argue for extensive metabolic reprogramming of glucose, fatty acid, bile acid and cholesterol metabolism. Kinetic modeling revealed reduced oxygen consumption in KO-tumors. NASH-derived HCC pathogenesis is driven by metabolic disturbances and should be considered separately from those caused by other etiologies. We conclude that mTOR functions as tumor suppressor in hepatocytes especially under long-term western diet feeding. However, some of the detrimental consequences of this diet are attenuated by mTOR blockade.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina-Treonina Quinases TOR , Carga Tumoral
5.
Cardiovasc Res ; 119(7): 1553-1567, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951047

RESUMO

AIMS: Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges. METHODS AND RESULTS: Male rats overexpressing the cardiac-specific VEGF-B transgene (VEGF-B TG) were treated for 3 or 6 weeks with deoxycorticosterone-acetate combined with a high-salt (HS) diet (DOCA + HS) to induce hypertension and cardiac damage. Extensive longitudinal echocardiographic studies of HF progression were conducted, starting at baseline. Sham-treated rats served as controls. To evaluate the metabolic alterations associated with HF, cardiac proteomics by mass spectrometry was performed. Hypertrophic non-treated VEGF-B TG hearts demonstrated high oxygen and adenosine triphosphate (ATP) demand with early onset of diastolic dysfunction. Administration of DOCA + HS to VEGF-B TG rats for 6 weeks amplified the progression from cardiac hypertrophy to HF, with a drastic drop in heart ATP concentration. Dobutamine stress echocardiographic analyses uncovered a significantly impaired systolic reserve. Mechanistically, the hallmark of the failing TG heart was an abnormal energy metabolism with decreased mitochondrial ATP, preceding the attenuated cardiac performance and leading to systolic HF. CONCLUSIONS: This study shows that the VEGF-B TG accelerates metabolic maladaptation which precedes structural cardiomyopathy in experimental hypertension and ultimately leads to systolic HF.


Assuntos
Acetato de Desoxicorticosterona , Insuficiência Cardíaca Sistólica , Insuficiência Cardíaca , Hipertensão , Ratos , Masculino , Animais , Fator B de Crescimento do Endotélio Vascular/metabolismo , Insuficiência Cardíaca Sistólica/complicações , Proteômica , Hipertensão/metabolismo , Miocárdio/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/complicações , Cardiomegalia/genética , Cardiomegalia/metabolismo
6.
Anesthesiology ; 138(6): 611-623, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893015

RESUMO

BACKGROUND: Maintenance of ion homeostasis is essential for normal brain function. Inhalational anesthetics are known to act on various receptors, but their effects on ion homeostatic systems, such as sodium/potassium-adenosine triphosphatase (Na+/K+-ATPase), remain largely unexplored. Based on reports demonstrating global network activity and wakefulness modulation by interstitial ions, the hypothesis was that deep isoflurane anesthesia affects ion homeostasis and the key mechanism for clearing extracellular potassium, Na+/K+-ATPase. METHODS: Using ion-selective microelectrodes, this study assessed isoflurane-induced extracellular ion dynamics in cortical slices of male and female Wistar rats in the absence of synaptic activity, in the presence of two-pore-domain potassium channel antagonists, during seizures, and during spreading depolarizations. The specific isoflurane effects on Na+/K+-ATPase function were measured using a coupled enzyme assay and studied the relevance of the findings in vivo and in silico. RESULTS: Isoflurane concentrations clinically relevant for burst suppression anesthesia increased baseline extracellular potassium (mean ± SD, 3.0 ± 0.0 vs. 3.9 ± 0.5 mM; P < 0.001; n = 39) and lowered extracellular sodium (153.4 ± 0.8 vs. 145.2 ± 6.0 mM; P < 0.001; n = 28). Similar changes in extracellular potassium and extracellular sodium and a substantial drop in extracellular calcium (1.5 ± 0.0 vs. 1.2 ± 0.1 mM; P = 0.001; n = 16) during inhibition of synaptic activity and two-pore-domain potassium suggested a different underlying mechanism. After seizure-like events and spreading depolarization, isoflurane greatly slowed extracellular potassium clearance (63.4 ± 18.2 vs. 196.2 ± 82.4 s; P < 0.001; n = 14). Na+/K+-ATPase activity was markedly reduced after isoflurane exposure (greater than 25%), affecting specifically the α2/3 activity fraction. In vivo, isoflurane-induced burst suppression resulted in impaired extracellular potassium clearance and interstitial potassium accumulation. A computational biophysical model reproduced the observed effects on extracellular potassium and displayed intensified bursting when Na+/K+-ATPase activity was reduced by 35%. Finally, Na+/K+-ATPase inhibition with ouabain induced burst-like activity during light anesthesia in vivo. CONCLUSIONS: The results demonstrate cortical ion homeostasis perturbation and specific Na+/K+-ATPase impairment during deep isoflurane anesthesia. Slowed potassium clearance and extracellular accumulation might modulate cortical excitability during burst suppression generation, while prolonged Na+/K+-ATPase impairment could contribute to neuronal dysfunction after deep anesthesia.


Assuntos
Isoflurano , Ratos , Animais , Masculino , Feminino , Isoflurano/farmacologia , Ratos Wistar , Homeostase , Encéfalo , Convulsões , Potássio/farmacologia , Sódio , Adenosina Trifosfatases
7.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232372

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and is associated with overweight and insulin resistance (IR). Almost nothing is known about in vivo alterations of liver metabolism in NAFLD, especially in the early stages of non-alcoholic steatohepatitis (NASH). Here, we used a complex mathematical model of liver metabolism to quantify the central hepatic metabolic functions of 71 children with biopsy-proven NAFLD. For each patient, a personalized model variant was generated based on enzyme abundances determined by mass spectroscopy. Our analysis revealed statistically significant alterations in the hepatic carbohydrate, lipid, and ammonia metabolism, which increased with the degree of obesity and severity of NAFLD. Histologic features of NASH and IR displayed opposing associations with changes in carbohydrate and lipid metabolism but synergistically decreased urea synthesis in favor of the increased release of glutamine, a driver of liver fibrosis. Taken together, our study reveals already significant alterations in the NASH liver of pediatric patients, which, however, are differently modulated by the simultaneous presence of IR.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Amônia , Carboidratos , Criança , Glutamina , Humanos , Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Prevalência , Ureia
8.
Circulation ; 144(24): 1926-1939, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34762513

RESUMO

BACKGROUND: Many heart diseases can result in reduced pumping capacity of the heart muscle. A mismatch between ATP demand and ATP production of cardiomyocytes is one of the possible causes. Assessment of the relation between myocardial ATP production (MVATP) and cardiac workload is important for better understanding disease development and choice of nutritional or pharmacologic treatment strategies. Because there is no method for measuring MVATP in vivo, the use of physiology-based metabolic models in conjunction with protein abundance data is an attractive approach. METHOD: We developed a comprehensive kinetic model of cardiac energy metabolism (CARDIOKIN1) that recapitulates numerous experimental findings on cardiac metabolism obtained with isolated cardiomyocytes, perfused animal hearts, and in vivo studies with humans. We used the model to assess the energy status of the left ventricle of healthy participants and patients with aortic stenosis and mitral valve insufficiency. Maximal enzyme activities were individually scaled by means of protein abundances in left ventricle tissue samples. The energy status of the left ventricle was quantified by the ATP consumption at rest (MVATP[rest]), at maximal workload (MVATP[max]), and by the myocardial ATP production reserve, representing the span between MVATP(rest) and MVATP(max). RESULTS: Compared with controls, in both groups of patients, MVATP(rest) was increased and MVATP(max) was decreased, resulting in a decreased myocardial ATP production reserve, although all patients had preserved ejection fraction. The variance of the energetic status was high, ranging from decreased to normal values. In both patient groups, the energetic status was tightly associated with mechanic energy demand. A decrease of MVATP(max) was associated with a decrease of the cardiac output, indicating that cardiac functionality and energetic performance of the ventricle are closely coupled. CONCLUSIONS: Our analysis suggests that the ATP-producing capacity of the left ventricle of patients with valvular dysfunction is generally diminished and correlates positively with mechanical energy demand and cardiac output. However, large differences exist in the energetic state of the myocardium even in patients with similar clinical or image-based markers of hypertrophy and pump function. Registration: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT03172338 and NCT04068740.


Assuntos
Trifosfato de Adenosina/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Ventrículos do Coração/metabolismo , Modelos Cardiovasculares , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
FEBS J ; 288(7): 2332-2346, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33030799

RESUMO

Metabolic reprogramming is a characteristic feature of cancer cells, but there is no unique metabolic program for all tumors. Genetic and gene expression studies have revealed heterogeneous inter- and intratumor patterns of metabolic enzymes and membrane transporters. The functional implications of this heterogeneity remain often elusive. Here, we applied a systems biology approach to gain a comprehensive and quantitative picture of metabolic changes in individual hepatocellular carcinoma (HCC). We used protein intensity profiles determined by mass spectrometry in samples of 10 human HCCs and the adjacent noncancerous tissue to calibrate Hepatokin1, a complex mathematical model of liver metabolism. We computed the 24-h profile of 18 metabolic functions related to carbohydrate, lipid, and nitrogen metabolism. There was a general tendency among the tumors toward downregulated glucose uptake and glucose release albeit with large intertumor variability. This finding calls into question that the Warburg effect dictates the metabolic phenotype of HCC. All tumors comprised elevated ß-oxidation rates. Urea synthesis was found to be consistently downregulated but without compromising the tumor's capacity for ammonia detoxification owing to increased glutamine synthesis. The largest intertumor heterogeneity was found for the uptake and release of lactate and the size of the cellular glycogen content. In line with the observed metabolic heterogeneity, the individual HCCs differed largely in their vulnerability against pharmacological treatment with metformin. Taken together, our approach provided a comprehensive and quantitative characterization of HCC metabolism that may pave the way for a computational a priori assessment of pharmacological therapies targeting metabolic processes of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Heterogeneidade Genética , Neoplasias Hepáticas/genética , Metabolismo dos Carboidratos/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Modelos Teóricos , Nitrogênio/metabolismo , Transdução de Sinais/genética
10.
Br J Cancer ; 122(2): 233-244, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819186

RESUMO

BACKGROUND: Metabolic alterations can serve as targets for diagnosis and cancer therapy. Due to the highly complex regulation of cellular metabolism, definite identification of metabolic pathway alterations remains challenging and requires sophisticated experimentation. METHODS: We applied a comprehensive kinetic model of the central carbon metabolism (CCM) to characterise metabolic reprogramming in murine liver cancer. RESULTS: We show that relative differences of protein abundances of metabolic enzymes obtained by mass spectrometry can be used to assess their maximal velocity values. Model simulations predicted tumour-specific alterations of various components of the CCM, a selected number of which were subsequently verified by in vitro and in vivo experiments. Furthermore, we demonstrate the ability of the kinetic model to identify metabolic pathways whose inhibition results in selective tumour cell killing. CONCLUSIONS: Our systems biology approach establishes that combining cellular experimentation with computer simulations of physiology-based metabolic models enables a comprehensive understanding of deregulated energetics in cancer. We propose that modelling proteomics data from human HCC with our approach will enable an individualised metabolic profiling of tumours and predictions of the efficacy of drug therapies targeting specific metabolic pathways.


Assuntos
Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Redes e Vias Metabólicas/genética , Proteoma/genética , Animais , Reprogramação Celular/genética , Simulação por Computador , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Proteoma/metabolismo
11.
Cells ; 8(5)2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137921

RESUMO

Human hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults and the most common cause of death in people with cirrhosis. While previous metabolic studies of HCC have mainly focused on the glucose metabolism (Warburg effect), less attention has been paid to tumor-specific features of the lipid metabolism. Here, we applied a computational approach to analyze major pathways of fatty acid utilization in individual HCC. To this end, we used protein intensity profiles of eleven human HCCs to parameterize tumor-specific kinetic models of cellular lipid metabolism including formation, enlargement, and degradation of lipid droplets (LDs). Our analysis reveals significant inter-tumor differences in the lipid metabolism. The majority of HCCs show a reduced uptake of fatty acids and decreased rate of ß-oxidation, however, some HCCs display a completely different metabolic phenotype characterized by high rates of ß-oxidation. Despite reduced fatty acid uptake in the majority of HCCs, the content of triacylglycerol is significantly enlarged compared to the tumor-adjacent tissue. This is due to tumor-specific expression profiles of regulatory proteins decorating the surface of LDs and controlling their turnover. Our simulations suggest that HCCs characterized by a very high content of triglycerides comprise regulatory peculiarities that render them susceptible to selective drug targeting without affecting healthy tissue.


Assuntos
Carcinoma Hepatocelular/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/cirurgia , Cromatografia Líquida , Ácidos Graxos/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/cirurgia , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Oxirredução , Fosfolipídeos/metabolismo , Mapas de Interação de Proteínas , Espectrometria de Massas em Tandem , Triglicerídeos/metabolismo , Adulto Jovem
12.
Liver Int ; 39(3): 540-556, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30444569

RESUMO

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adolescents today. In comparison with adult disease, paediatric NAFLD may show a periportal localization, which is associated with advanced fibrosis. This study aimed to assess the role of genetic risk variants for histological disease pattern and severity in childhood NAFLD. METHODS: We studied 14 single nucleotide polymorphisms (SNP) in a cohort of 70 adolescents with biopsy-proven NAFLD. Genotype was compared to an adult control cohort (n = 200) and analysed in relation to histological disease severity and liver tissue proteomics. RESULTS: Three of the 14 SNPs were significantly associated with paediatric NAFLD after FDR adjustment, rs738409 (PNPLA3, P = 2.80 × 10-06 ), rs1044498 (ENPP1, P = 0.0091) and rs780094 (GCKR, P = 0.0281). The severity of steatosis was critically associated with rs738409 (OR=3.25; 95% CI: 1.72-6.52, FDR-adjusted P = 0.0070). The strongest variants associated with severity of fibrosis were rs1260326, rs780094 (both GCKR) and rs659366 (UCP2). PNPLA3 was associated with a portal pattern of steatosis, inflammation and fibrosis. Proteome profiling revealed decreasing levels of GCKR protein with increasing carriage of the rs1260326/rs780094 minor alleles and downregulation of the retinol pathway in rs738409 G/G carriers. Computational metabolic modelling highlighted functional relevance of PNPLA3, GCKR and UCP2 for NAFLD development. CONCLUSIONS: This study provides evidence for the role of PNPLA3 as a determinant of portal NAFLD localization and severity of portal fibrosis in children and adolescents, the risk variant being associated with an impaired hepatic retinol metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Lipase/genética , Cirrose Hepática/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Proteína Desacopladora 1/genética , Adolescente , Fatores Etários , Estudos de Casos e Controles , Criança , Progressão da Doença , Feminino , Predisposição Genética para Doença , Humanos , Fígado/enzimologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/enzimologia , Masculino , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/enzimologia , Fenótipo , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo , Vitamina A/metabolismo
13.
Front Cell Neurosci ; 12: 335, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349461

RESUMO

Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.

14.
Arch Toxicol ; 92(10): 3191-3205, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143847

RESUMO

Propofol is the most frequently used intravenous anesthetic for induction and maintenance of anesthesia. Propofol acts first and formost as a GABAA-agonist, but effects on other neuronal receptors and voltage-gated ion channels have been described. Besides its direct effect on neurotransmission, propofol-dependent impairment of mitochondrial function in neurons has been suggested to be responsible for neurotoxicity and postoperative brain dysfunction. To clarify the potential neurotoxic effect in more detail, we investigated the effects of propofol on neuronal energy metabolism of hippocampal slices of the stratum pyramidale of area CA3 at different activity states. We combined oxygen-measurements, electrophysiology and flavin adenine dinucleotide (FAD)-imaging with computational modeling to uncover molecular targets in mitochondrial energy metabolism that are directly inhibited by propofol. We found that high concentrations of propofol (100 µM) significantly decrease population spikes, paired pulse ratio, the cerebral metabolic rate of oxygen consumption (CMRO2), frequency and power of gamma oscillations and increase FAD-oxidation. Model-based simulation of mitochondrial FAD redox state at inhibition of different respiratory chain (RC) complexes and the pyruvate-dehydrogenase show that the alterations in FAD-autofluorescence during propofol administration can be explained with a strong direct inhibition of the complex II (cxII) of the RC. While this inhibition may not affect ATP availability under normal conditions, it may have an impact at high energy demand. Our data support the notion that propofol may lead to neurotoxicity and neuronal dysfunction by directly affecting the energy metabolism in neurons.


Assuntos
Região CA3 Hipocampal/efeitos dos fármacos , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Síndromes Neurotóxicas/etiologia , Propofol/efeitos adversos , Trifosfato de Adenosina/metabolismo , Anestésicos Intravenosos/efeitos adversos , Animais , Região CA3 Hipocampal/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Técnicas de Cultura de Órgãos , Consumo de Oxigênio/efeitos dos fármacos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos
15.
Nat Commun ; 9(1): 2386, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921957

RESUMO

The epidemic increase of non-alcoholic fatty liver diseases (NAFLD) requires a deeper understanding of the regulatory circuits controlling the response of liver metabolism to nutritional challenges, medical drugs, and genetic enzyme variants. As in vivo studies of human liver metabolism are encumbered with serious ethical and technical issues, we developed a comprehensive biochemistry-based kinetic model of the central liver metabolism including the regulation of enzyme activities by their reactants, allosteric effectors, and hormone-dependent phosphorylation. The utility of the model for basic research and applications in medicine and pharmacology is illustrated by simulating diurnal variations of the metabolic state of the liver at various perturbations caused by nutritional challenges (alcohol), drugs (valproate), and inherited enzyme disorders (galactosemia). Using proteomics data to scale maximal enzyme activities, the model is used to highlight differences in the metabolic functions of normal hepatocytes and malignant liver cells (adenoma and hepatocellular carcinoma).


Assuntos
Algoritmos , Fígado/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Carcinoma Hepatocelular/metabolismo , Inibidores Enzimáticos/uso terapêutico , Galactosemias/tratamento farmacológico , Galactosemias/metabolismo , Hepatócitos/metabolismo , Humanos , Cinética , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteômica/métodos , Ácido Valproico/uso terapêutico
16.
Oncotarget ; 8(62): 105882-105904, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29285300

RESUMO

Renal oncocytomas are rare benign tumors of the kidney and characterized by a deficient complex I (CI) enzyme activity of the oxidative phosphorylation (OXPHOS) system caused by mitochondrial DNA (mtDNA) mutations. Yet, little is known about the underlying molecular mechanisms and alterations of metabolic pathways in this tumor. We compared renal oncocytomas with adjacent matched normal kidney tissues on a global scale by multi-omics approaches, including whole exome sequencing (WES), proteomics, metabolomics, and metabolic pathway simulation. The abundance of proteins localized to mitochondria increased more than 2-fold, the only exception was a strong decrease in the abundance for CI subunits that revealed several pathogenic heteroplasmic mtDNA mutations by WES. We also observed renal oncocytomas to dysregulate main metabolic pathways, shunting away from gluconeogenesis and lipid metabolism. Nevertheless, the abundance of energy carrier molecules such as NAD+, NADH, NADP, ATP, and ADP were significantly higher in renal oncocytomas. Finally, a substantial 5000-fold increase of the reactive oxygen species scavenger glutathione can be regarded as a new hallmark of renal oncocytoma. Our findings demonstrate that renal oncocytomas undergo a metabolic switch to eliminate ATP consuming processes to ensure a sufficient energy supply for the tumor.

17.
Int J Mol Sci ; 18(9)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28880249

RESUMO

Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP) synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABAA antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD) redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH2 ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control) than interictal activity (~15% above control). Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.


Assuntos
Potenciais de Ação/fisiologia , Consumo de Oxigênio/fisiologia , Convulsões/metabolismo , Potenciais de Ação/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Antracenos/farmacologia , Bicuculina/farmacologia , Eletrofisiologia , Flavina-Adenina Dinucleotídeo/metabolismo , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
18.
FEBS J ; 284(19): 3245-3261, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28763157

RESUMO

The liver responds to elevated plasma concentrations of free fatty acids (FFAs) with an enhanced uptake of FFAs and their esterification to triacylglycerol (TAG). On the long term, this may result in massive hepatic TAG accumulation called steatosis hepatitis. In hepatocytes, the poor water-soluble TAG is packed in specialized organelles: Lipid droplets (LDs) serving as transient cellular deposit and lipoproteins (LPs) transporting TAG and cholesterol esters to extra-hepatic tissues. The dynamics of these organelles is controlled by a variety of regulatory surface proteins (RSPs). Assembly and export of VLDLs are mainly regulated by the microsomal transfer protein (MTP) and apoprotein B100. Formation and lipolysis of LDs are regulated by several RSPs. The best studied regulators belong to the PAT (Perilipin/Adipophilin/TIP47) and CIDE families. Knockdown or overexpression of SRPs may significantly affect the total number and size distribution of LDs. Intriguingly, a large cell-to-cell heterogeneity with respect to the number and size of LDs has been found in various cell types including hepatocytes. These findings suggest that the extent of cellular lipid accumulation is determined not only by the imbalance between lipid supply and utilization but also by variations in the expression of RSPs and metabolic enzymes. To better understand the relative regulatory impact of individual processes involved in the cellular TAG turnover, we developed a comprehensive kinetic model encompassing the pathways of the fatty acid and triglyceride metabolism and the main molecular processes governing the dynamics of LDs. The model was parametrized such that a large number of experimental in vitro and in vivo findings are correctly recapitulated. A control analysis of the model revealed that variations in the activity of FFA uptake, diacylglycerol acyltransferase (DGAT) 2, and adipose triglyceride lipase (ATGL) have the strongest influence on the cellular TAG level. We used the model to simulate LD size distributions in human hepatoma cells and hepatocytes exposed to a challenge with FFAs. A random fold change by a factor of about two in the activity of RSPs was sufficient to reproduce the large diversity of droplet size distributions observed in individual cells. Under the premise that the same extent of variability of RSPs holds for the intact organ, our model predicts variations in the TAG content of individual hepatocytes by a factor of about 3-6 depending on the nutritional regime. Taken together, our modeling approach integrates numerous experimental findings on individual processes in the cellular TAG metabolism and LD dynamics metabolism to a consistent state-of-the-art dynamic network model that can be used to study how changes in the external conditions or systemic parameters will affect the TAG content of hepatocytes.


Assuntos
Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Modelos Estatísticos , Linhagem Celular Tumoral , Ésteres do Colesterol/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Lipase/genética , Lipase/metabolismo , Gotículas Lipídicas/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Modelos Biológicos , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Cultura Primária de Células , Triglicerídeos/metabolismo
19.
Recent Results Cancer Res ; 207: 221-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557541

RESUMO

Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.


Assuntos
Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Modelos Teóricos , Humanos
20.
J Cereb Blood Flow Metab ; 35(9): 1494-506, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25899300

RESUMO

Imaging of the cellular fluorescence of the reduced form of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) is one of the few metabolic readouts that enable noninvasive and time-resolved monitoring of the functional status of mitochondria in neuronal tissues. Stimulation-induced transient changes in NAD(P)H fluorescence intensity frequently display a biphasic characteristic that is influenced by various molecular processes, e.g., intracellular calcium dynamics, tricarboxylic acid cycle activity, the malate-aspartate shuttle, the glycerol-3-phosphate shuttle, oxygen supply or adenosine triphosphate (ATP) demand. To evaluate the relative impact of these processes, we developed and validated a detailed physiologic mathematical model of the energy metabolism of neuronal cells and used the model to simulate metabolic changes of single cells and tissue slices under different settings of stimulus-induced activity and varying nutritional supply of glucose, pyruvate or lactate. Notably, all experimentally determined NAD(P)H responses could be reproduced with one and the same generic cellular model. Our computations reveal that (1) cells with quite different metabolic status may generate almost identical NAD(P)H responses and (2) cells of the same type may quite differently contribute to aggregate NAD(P)H responses recorded in brain slices, depending on the spatial location within the tissue. Our computational approach reconciles different and sometimes even controversial experimental findings and improves our mechanistic understanding of the metabolic changes underlying live-cell NAD(P)H fluorescence transients.


Assuntos
Metabolismo Energético/fisiologia , Modelos Neurológicos , NADP/metabolismo , Neurônios/metabolismo , Animais , Fluorescência , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA