Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Omics ; 15(5): 348-360, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31465043

RESUMO

Comprehensive proteome quantification is crucial for a better understanding of underlying mechanisms of diseases. Liquid chromatography mass spectrometry (LC-MS) has become the method of choice for comprehensive proteome quantification due to its power and versatility. Even though great advances have been made in recent years, full proteome coverage for complex samples remains challenging due to the high dynamic range of protein expression. Additionally, when studying disease regulatory proteins, biomarkers or potential drug targets are often low abundant, such as for instance kinases and transcription factors. Here, we show that with improvements in chromatography and data analysis the single shot proteome coverage can go beyond 10 000 proteins in human tissue. In a testis cancer study, we quantified 11 200 proteins using data independent acquisition (DIA). This depth was achieved with a false discovery rate of 1% which was experimentally validated using a two species test. We introduce the concept of hybrid libraries which combines the strength of direct searching of DIA data as well as the use of large project-specific or published DDA data sets. Remarkably deep proteome coverage is possible using hybrid libraries without the additional burden of creating a project-specific library. Within the testis cancer set, we found a large proportion of proteins in an altered expression (in total: 3351; 1453 increased in cancer). Many of these proteins could be linked to the hallmarks of cancer. For example, the complement system was downregulated which helps to evade the immune response and chromosomal replication was upregulated indicating a dysregulated cell cycle.


Assuntos
Cromatografia Líquida/instrumentação , Espectrometria de Massas/instrumentação , Células-Tronco Neoplásicas/química , Proteômica/métodos , Cromatografia Líquida/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Espectrometria de Massas/métodos , Células-Tronco Neoplásicas/metabolismo , Proteoma , Neoplasias Testiculares/metabolismo
2.
Mol Cell Proteomics ; 18(4): 786-795, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30651306

RESUMO

Quantitative cross-linking mass spectrometry (QCLMS) reveals structural detail on altered protein states in solution. On its way to becoming a routine technology, QCLMS could benefit from data-independent acquisition (DIA), which generally enables greater reproducibility than data-dependent acquisition (DDA) and increased throughput over targeted methods. Therefore, here we introduce DIA to QCLMS by extending a widely used DIA software, Spectronaut, to also accommodate cross-link data. A mixture of seven proteins cross-linked with bis[sulfosuccinimidyl] suberate (BS3) was used to evaluate this workflow. Out of the 414 identified unique residue pairs, 292 (70%) were quantifiable across triplicates with a coefficient of variation (CV) of 10%, with manual correction of peak selection and boundaries for PSMs in the lower quartile of individual CV values. This compares favorably to DDA where we quantified cross-links across triplicates with a CV of 66%, for a single protein. We found DIA-QCLMS to be capable of detecting changing abundances of cross-linked peptides in complex mixtures, despite the ratio compression encountered when increasing sample complexity through the addition of E. coli cell lysate as matrix. In conclusion, the DIA software Spectronaut can now be used in cross-linking and DIA is indeed able to improve QCLMS.


Assuntos
Reagentes de Ligações Cruzadas/química , Análise de Dados , Espectrometria de Massas/métodos , Animais , Escherichia coli/metabolismo , Humanos , Peptídeos/química , Reprodutibilidade dos Testes , Software
3.
Mol Cell Proteomics ; 16(12): 2296-2309, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29070702

RESUMO

Comprehensive, reproducible and precise analysis of large sample cohorts is one of the key objectives of quantitative proteomics. Here, we present an implementation of data-independent acquisition using its parallel acquisition nature that surpasses the limitation of serial MS2 acquisition of data-dependent acquisition on a quadrupole ultra-high field Orbitrap mass spectrometer. In deep single shot data-independent acquisition, we identified and quantified 6,383 proteins in human cell lines using 2-or-more peptides/protein and over 7100 proteins when including the 717 proteins that were identified on the basis of a single peptide sequence. 7739 proteins were identified in mouse tissues using 2-or-more peptides/protein and 8121 when including the 382 proteins that were identified based on a single peptide sequence. Missing values for proteins were within 0.3 to 2.1% and median coefficients of variation of 4.7 to 6.2% among technical triplicates. In very complex mixtures, we could quantify 10,780 proteins and 12,192 proteins when including the 1412 proteins that were identified based on a single peptide sequence. Using this optimized DIA, we investigated large-protein networks before and after the critical period for whisker experience-induced synaptic strength in the murine somatosensory cortex 1-barrel field. This work shows that parallel mass spectrometry enables proteome profiling for discovery with high coverage, reproducibility, precision and scalability.


Assuntos
Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Linhagem Celular , Cromatografia Líquida , Células HEK293 , Células HeLa , Humanos , Camundongos , Peptídeos/genética , Reprodutibilidade dos Testes , Análise de Sequência de Proteína
4.
Mol Cell Proteomics ; 14(5): 1400-10, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724911

RESUMO

The data-independent acquisition (DIA) approach has recently been introduced as a novel mass spectrometric method that promises to combine the high content aspect of shotgun proteomics with the reproducibility and precision of selected reaction monitoring. Here, we evaluate, whether SWATH-MS type DIA effectively translates into a better protein profiling as compared with the established shotgun proteomics. We implemented a novel DIA method on the widely used Orbitrap platform and used retention-time-normalized (iRT) spectral libraries for targeted data extraction using Spectronaut. We call this combination hyper reaction monitoring (HRM). Using a controlled sample set, we show that HRM outperformed shotgun proteomics both in the number of consistently identified peptides across multiple measurements and quantification of differentially abundant proteins. The reproducibility of HRM in peptide detection was above 98%, resulting in quasi complete data sets compared with 49% of shotgun proteomics. Utilizing HRM, we profiled acetaminophen (APAP)(1)-treated three-dimensional human liver microtissues. An early onset of relevant proteome changes was revealed at subtoxic doses of APAP. Further, we detected and quantified for the first time human NAPQI-protein adducts that might be relevant for the toxicity of APAP. The adducts were identified on four mitochondrial oxidative stress related proteins (GATM, PARK7, PRDX6, and VDAC2) and two other proteins (ANXA2 and FTCD). Our findings imply that DIA should be the preferred method for quantitative protein profiling.


Assuntos
Acetaminofen/farmacologia , Analgésicos não Narcóticos/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Peptídeos/análise , Proteoma/análise , Amidinotransferases/análise , Amidinotransferases/genética , Amidinotransferases/metabolismo , Amônia-Liases/análise , Amônia-Liases/genética , Amônia-Liases/metabolismo , Anexina A2/análise , Anexina A2/genética , Anexina A2/metabolismo , Expressão Gênica , Glutamato Formimidoiltransferase/análise , Glutamato Formimidoiltransferase/genética , Glutamato Formimidoiltransferase/metabolismo , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Enzimas Multifuncionais , Proteínas Oncogênicas/análise , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Peroxirredoxina VI/análise , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Proteína Desglicase DJ-1 , Proteólise , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Técnicas de Cultura de Tecidos , Tripsina/química , Canal de Ânion 2 Dependente de Voltagem/análise , Canal de Ânion 2 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo
5.
Mol Cell Proteomics ; 14(3): 739-49, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561506

RESUMO

Targeted mass spectrometry by selected reaction monitoring (S/MRM) has proven to be a suitable technique for the consistent and reproducible quantification of proteins across multiple biological samples and a wide dynamic range. This performance profile is an important prerequisite for systems biology and biomedical research. However, the method is limited to the measurements of a few hundred peptides per LC-MS analysis. Recently, we introduced SWATH-MS, a combination of data independent acquisition and targeted data analysis that vastly extends the number of peptides/proteins quantified per sample, while maintaining the favorable performance profile of S/MRM. Here we applied the SWATH-MS technique to quantify changes over time in a large fraction of the proteome expressed in Saccharomyces cerevisiae in response to osmotic stress. We sampled cell cultures in biological triplicates at six time points following the application of osmotic stress and acquired single injection data independent acquisition data sets on a high-resolution 5600 tripleTOF instrument operated in SWATH mode. Proteins were quantified by the targeted extraction and integration of transition signal groups from the SWATH-MS datasets for peptides that are proteotypic for specific yeast proteins. We consistently identified and quantified more than 15,000 peptides and 2500 proteins across the 18 samples. We demonstrate high reproducibility between technical and biological replicates across all time points and protein abundances. In addition, we show that the abundance of hundreds of proteins was significantly regulated upon osmotic shock, and pathway enrichment analysis revealed that the proteins reacting to osmotic shock are mainly involved in the carbohydrate and amino acid metabolism. Overall, this study demonstrates the ability of SWATH-MS to efficiently generate reproducible, consistent, and quantitatively accurate measurements of a large fraction of a proteome across multiple samples.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/metabolismo , Metabolismo dos Carboidratos , Osmose , Peptídeos/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA