Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 342, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031192

RESUMO

BACKGROUND: Despite improved patient outcome using tyrosine kinase inhibitors (TKIs), chronic myeloid leukaemia (CML) patients require life-long treatment due to leukaemic stem cell (LSC) persistence. LSCs reside in the bone marrow (BM) niche, which they modify to their advantage. The BM provides oncogene-independent signals to aid LSC cell survival and quiescence. The bone-morphogenetic pathway (BMP) is one pathway identified to be highly deregulated in CML, with high levels of BMP ligands detected in the BM, accompanied by CML stem and progenitor cells overexpressing BMP type 1 receptors- activin-like kinases (ALKs), especially in TKI resistant patients. Saracatinib (SC), a SRC/ABL1 dual inhibitor, inhibits the growth of CML cells resistant to the TKI imatinib (IM). Recent studies indicate that SC is also a potent ALK inhibitor and BMP antagonist. Here we investigate the efficacy of SC in overcoming CML BCR::ABL1 dependent and independent signals mediated by the BM niche both in 2D and 3D culture. METHODS: CML cells (K562 cell line and CML CD34+ primary cells) were treated with single or combination treatments of: IM, SC and the BMP receptors inhibitor dorsomorphin (DOR), with or without BMP4 stimulation in 2D (suspension) and 3D co-culture on HS5 stroma cell line and mesenchymal stem cells in AggreWell and microfluidic devices. Flow cytometry was performed to investigate apoptosis, cell cycle progression and proliferation, alongside colony assays following treatment. Proteins changes were validated by immunoblotting and transcriptional changes by Fluidigm multiplex qPCR. RESULTS: By targeting the BMP pathway, using specific inhibitors against ALKs in combination with SRC and ABL TKIs, we show an increase in apoptosis, altered cell cycle regulation, fewer cell divisions, and reduced numbers of CD34+ cells. Impairment of long-term proliferation and differentiation potential after combinatorial treatment also occurred. CONCLUSION: BMP signalling pathway is important for CML cell survival. Targeting SRC, ABL and ALK kinases is more effective than ABL inhibition alone, the combination efficacy importantly being demonstrated in both 2D and 3D cell cultures highlighting the need for combinatorial therapies in contrast to standard of care single agents. Our study provides justification to target multiple kinases in CML to combat LSC persistence.


Blood is made in the spongy inner most section of the bone, called the bone marrow. The bone marrow is where normal blood stem cells live that are responsible for producing the different blood cell types; white blood cells (fight infections), red blood cells (carrying oxygen around the body), platelets (blood clotting) and other cells which support this process. Chronic myeloid leukaemia (CML) is a type of blood cancer that starts in the bone marrow. CML occurs when a normal blood stem cell becomes damaged, forming a leukaemia stem cell (LSC), leading to blood cancer. LSCs multiply and generate many faulty cancerous white blood cells that do not work properly. Patients are treated with a drug called imatinib, which reduces the number of cancerous cells circulating in the body. In many cases, this treatment is not enough to cure the disease because the bone marrow protects the LSCs from the drug meaning patients must remain on long term treatment. This work has discovered one of the ways in which the bone marrow protects LSCs from treatments and has used this knowledge to test new drugs that stop this protection. Our findings show that by combining two drugs, one that overcomes this protection and one that directly targets the cancerous cells, we can destroy more of the LSCs. These findings are a step closer towards a cure for CML and could improve treatment for patients in the future. Video Abstract.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Medula Óssea/metabolismo , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Apoptose , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas de Fusão bcr-abl , Células-Tronco Neoplásicas/metabolismo , Resistencia a Medicamentos Antineoplásicos
2.
Br J Cancer ; 127(8): 1385-1393, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35715635

RESUMO

Breast cancer (BC) remains the most common cancer, as well as the leading cause of cancer mortality in women worldwide [1]. Approximately 30% of patients with early-stage BC experience metastasis or a recurrent form of the disease [2]. The phenomenon of BC dormancy, where metastasised cancer cells remain in a quiescent phase at their disseminated location and for unknown reasons can become actively proliferative again, further adds to BC's clinical burden with treatment at this secondary stage typically proving futile. An emerging avenue of research focuses on the metabolic properties of dormant BC cells (BCCs) and potential metabolic changes causing BCCs to enter/exit their quiescent state. Here we explore several studies that have uncovered changes in carbon metabolism underlying a dormant state, with conflicting studies uncovering shifts towards both glycolysis and/or oxidative phosphorylation. This review highlights that the metabolic states/shifts of dormant BCCs seem to be dependent on different BC subtypes and receptor status; however, more work needs to be done to fully map these differences. Building on the research that this review outlines could provide new personalised therapeutic possibilities for BC patients.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/patologia , Carbono , Divisão Celular , Feminino , Humanos
3.
J Biomater Appl ; 36(3): 541-551, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34018854

RESUMO

Hydrogels are reported to have various biomedical field applications, and many reports also suggest that soft gels promote stem cell differentiation. Chondrogenic differentiation of mesenchymal stem cells (MSC) is significant in articular cartilage repair. This study focuses on polysaccharide-based hydrogels which enhance chondrocyte lineage differentiation of MSC when grown in the hydrogels. This study implies that the prepared hydrogels promote specific lineage without any external chemical induction factors. The techniques, including immunofluorescence and functional assays to assess the differentiation and in vivo implantation, were employed. All observations paved the way towards confirmation that the galactoxyloglucan-based hydrogel is an attractive candidate for supporting stem cell growth and cartilaginous differentiation.


Assuntos
Resinas Acrílicas/química , Galactose/química , Glucanos/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Cartilagem Articular , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Condrogênese , Hidrogéis/química , Ratos , Ratos Wistar
4.
Sci Rep ; 10(1): 14971, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917945

RESUMO

Mannheimia haemolytica is the primary bacterial species associated with respiratory disease of ruminants. A lack of cost-effective, reproducible models for the study of M. haemolytica pathogenesis has hampered efforts to better understand the molecular interactions governing disease progression. We employed a highly optimised ovine tracheal epithelial cell model to assess the colonisation of various pathogenic and non-pathogenic M. haemolytica isolates of bovine and ovine origin. Comparison of single representative pathogenic and non-pathogenic ovine isolates over ten time-points by enumeration of tissue-associated bacteria, histology, immunofluorescence microscopy and scanning electron microscopy revealed temporal differences in adhesion, proliferation, bacterial cell physiology and host cell responses. Comparison of eight isolates of bovine and ovine origin at three key time-points (2 h, 48 h and 72 h), revealed that colonisation was not strictly pathogen or serotype specific, with isolates of serotype A1, A2, A6 and A12 being capable of colonising the cell layer regardless of host species or disease status of the host. A trend towards increased proliferative capacity by pathogenic ovine isolates was observed. These results indicate that the host-specific nature of M. haemolytica infection may result at least partially from the colonisation-related processes of adhesion, invasion and proliferation at the epithelial interface.


Assuntos
Células Epiteliais/microbiologia , Interações Hospedeiro-Parasita , Mannheimia haemolytica , Infecções por Pasteurellaceae/microbiologia , Doenças dos Ovinos/microbiologia , Ovinos/microbiologia , Traqueia/microbiologia , Animais , Mannheimia haemolytica/patogenicidade , Mannheimia haemolytica/fisiologia , Infecções por Pasteurellaceae/veterinária
5.
Nanomedicine (Lond) ; 15(25): 2433-2445, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914695

RESUMO

Aim: To examine the multimodal contrasting ability of gold-dotted magnetic nanoparticles (Au*MNPs) for magnetic resonance (MR), computed tomography (CT) and intravascular ultrasound (IVUS) imaging. Materials & methods: Au*MNPs were prepared by adapting an impregnation method, without using surface capping reagents and characterized (transmission electron microscopy, x-ray diffraction and Fourier-transform infrared spectroscopy) with their in vitro cytotoxicity assessed, followed by imaging assessments. Results: The contrast-enhancing ability of Au*MNPs was shown to be concentration-dependent across MR, CT and IVUS imaging. The Au content of the Au*MNP led to evident increases of the IVUS signal. Conclusion: We demonstrated that Au*MNPs showed concentration-dependent contrast-enhancing ability in MRI and CT imaging, and for the first-time in IVUS imaging due to the Au content. These Au*MNPs are promising toward solidifying tri-modal imaging-based theragnostics.


Assuntos
Ouro , Nanopartículas de Magnetita , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas , Tomografia Computadorizada por Raios X , Ultrassonografia de Intervenção
6.
Infect Immun ; 87(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962401

RESUMO

The Gram-negative bacterium Mannheimia haemolytica is the primary bacterial species associated with bovine respiratory disease (BRD) and is responsible for significant economic losses to livestock industries worldwide. Healthy cattle are frequently colonized by commensal serotype A2 strains, but disease is usually caused by pathogenic strains of serotype A1. For reasons that are poorly understood, a transition occurs within the respiratory tract and a sudden explosive proliferation of serotype A1 bacteria leads to the onset of pneumonic disease. Very little is known about the interactions of M. haemolytica with airway epithelial cells of the respiratory mucosa which might explain the different abilities of serotype A1 and A2 strains to cause disease. In the present study, host-pathogen interactions in the bovine respiratory tract were mimicked using a novel differentiated bovine bronchial epithelial cell (BBEC) infection model. In this model, differentiated BBECs were inoculated with serotype A1 or A2 strains of M. haemolytica and the course of infection followed over a 5-day period by microscopic assessment and measurement of key proinflammatory mediators. We have demonstrated that serotype A1, but not A2, M. haemolytica invades differentiated BBECs by transcytosis and subsequently undergoes rapid intracellular replication before spreading to adjacent cells and causing extensive cellular damage. Our findings suggest that the explosive proliferation of serotype A1 M. haemolytica that occurs within the bovine respiratory tract prior to the onset of pneumonic disease is potentially due to bacterial invasion of, and rapid proliferation within, the mucosal epithelium. The discovery of this previously unrecognized mechanism of pathogenesis is important because it will allow the serotype A1-specific virulence determinants responsible for invasion to be identified and thereby provide opportunities for the development of new strategies for combatting BRD aimed at preventing early colonization and infection of the bovine respiratory tract.


Assuntos
Células Epiteliais/microbiologia , Mannheimia haemolytica/patogenicidade , Pasteurelose Pneumônica/microbiologia , Animais , Brônquios/citologia , Brônquios/microbiologia , Bovinos , Mannheimia haemolytica/crescimento & desenvolvimento , Mannheimia haemolytica/fisiologia , Sistema Respiratório/microbiologia , Virulência
7.
Vaccine ; 37(20): 2679-2686, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30967310

RESUMO

After decades of inconsequential infections, and sporadic outbreaks in the Asia-Pacific region between 2007 and 2013, Zika virus caused a widespread epidemic in South America in 2015 that was complicated by severe congenital infections. After the WHO declared a Public Health Emergency of International Concern in February 2016, vaccine development efforts based on different platforms were initiated. Several candidates have since been evaluated in clinical phase I studies. Of these, a Zika purified inactivated vaccine (ZPIV), adjuvanted with aluminum hydroxide, developed by the Walter Reed Army Institute of Research (WRAIR), yielded high seroconversion rates. Sanofi Pasteur further optimized the vaccine in terms of production scale, purification conditions and regulatory compliance, using its experience in flavivirus vaccine development. Here we report that the resulting optimized vaccine (ZPIV-SP) elicited robust seroneutralizing antibody responses and provided complete protection from homologous Zika virus strain challenge in immunocompetent BALB/c mice. ZPIV-SP also showed improved immunogenicity compared with the first-generation vaccine, and improved efficacy in the more permissive interferon receptor-deficient A129 mice. Finally, analysis of the IgG response directed towards nonstructural protein 1 (NS1) suggests that viral NS1 was efficiently removed during the optimized purification process of ZPIV-SP. Together, these results suggest that the optimized vaccine is well suited for further evaluation in larger animal models and late-stage clinical studies.


Assuntos
Imunogenicidade da Vacina , Potência de Vacina , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Knockout , Proteínas do Envelope Viral/imunologia , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
8.
Sci Rep ; 8(1): 14893, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291311

RESUMO

There is an urgent need to develop improved, physiologically-relevant in vitro models of airway epithelia with which to better understand the pathological processes associated with infection, allergies and toxicological insults of the respiratory tract of both humans and domesticated animals. In the present study, we have characterised the proliferation and differentiation of primary bovine bronchial epithelial cells (BBECs) grown at an air-liquid interface (ALI) at three-day intervals over a period of 42 days from the introduction of the ALI. The differentiated BBEC model was highly representative of the ex vivo epithelium from which the epithelial cells were derived; a columnar, pseudostratified epithelium that was highly reflective of native airway epithelium was formed which comprised ciliated, goblet and basal cells. The hallmark defences of the respiratory tract, namely barrier function and mucociliary clearance, were present, thus demonstrating that the model is an excellent mimic of bovine respiratory epithelium. The epithelium was fully differentiated by day 21 post-ALI and, crucially, remained healthy and stable for a further 21 days. Thus, the differentiated BBEC model has a three-week window which will allow wide-ranging and long-term experiments to be performed in the fields of infection, toxicology or general airway physiology.


Assuntos
Células Epiteliais/citologia , Modelos Biológicos , Cultura Primária de Células/métodos , Mucosa Respiratória/crescimento & desenvolvimento , Animais , Bovinos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Pulmão/citologia , Estudo de Prova de Conceito , Mucosa Respiratória/citologia
9.
PLoS One ; 13(3): e0193998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29518140

RESUMO

Respiratory tract infections are of significant concern in the agriculture industry. There is a requirement for the development of well-characterised in vitro epithelial cell culture models in order to dissect the diverse molecular interactions occurring at the host-pathogen interface in airway epithelia. We have analysed key factors that influence growth and differentiation of ovine tracheal epithelial cells in an air-liquid interface (ALI) culture system. Cellular differentiation was assessed at 21 days post-ALI, a time-point which we have previously shown to be sufficient for differentiation in standard growth conditions. We identified a dose-dependent response to epidermal growth factor (EGF) in terms of both epithelial thickening and ciliation levels. Maximal ciliation levels were observed with 25 ng ml-1 EGF. We identified a strict requirement for retinoic acid (RA) in epithelial differentiation as RA exclusion resulted in the formation of a stratified squamous epithelium, devoid of cilia. The pore-density of the growth substrate also had an influence on differentiation as high pore-density inserts yielded higher levels of ciliation and more uniform cell layers than low pore-density inserts. Differentiation was also improved by culturing the cells in an atmosphere of sub-ambient oxygen concentration. We compared two submerged growth media and observed differences in the rate of proliferation/expansion, barrier formation and also in terminal differentiation. Taken together, these results indicate important differences between the response of ovine tracheal epithelial cells and other previously described airway epithelial models, to a variety of environmental conditions. These data also indicate that the phenotype of ovine tracheal epithelial cells can be tailored in vitro by precise modulation of growth conditions, thereby yielding a customisable, potential infection model.


Assuntos
Meios de Cultura/farmacologia , Células Epiteliais/citologia , Cultura Primária de Células/métodos , Ovinos/anatomia & histologia , Traqueia/citologia , Ar , Animais , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Cílios/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Modelos Animais , Oxigênio/farmacologia , Porosidade , Cultura Primária de Células/instrumentação , Especificidade da Espécie , Tretinoína/farmacologia
10.
PLoS One ; 13(2): e0192562, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444183

RESUMO

Mesenchymal stem cells are multipotent adult stem cells capable of generating bone, cartilage and fat, and are thus currently being exploited for regenerative medicine. When considering osteogenesis, developments have been made with regards to chemical induction (e.g. differentiation media) and physical induction (e.g. material stiffness, nanotopography), targeting established early transcription factors or regulators such as runx2 or bone morphogenic proteins and promoting increased numbers of cells committing to osteo-specific differentiation. Recent research highlighted the involvement of microRNAs in lineage commitment and terminal differentiation. Herein, gold nanoparticles that confer stability to short single stranded RNAs were used to deliver MiR-31 antagomiRs to both pre-osteoblastic cells and primary human MSCs in vitro. Results showed that blocking miR-31 led to an increase in osterix protein in both cell types at day 7, with an increase in osteocalcin at day 21, suggesting MSC osteogenesis. In addition, it was noted that antagomiR sequence direction was important, with the 5 prime reading direction proving more effective than the 3 prime. This study highlights the potential that miRNA antagomiR-tagged nanoparticles offer as novel therapeutics in regenerative medicine.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Nanopartículas Metálicas , MicroRNAs/efeitos dos fármacos , Osteocalcina/metabolismo , Fator de Transcrição Sp7/metabolismo , Diferenciação Celular , Ouro/química , Humanos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Osteoblastos/metabolismo , Polietilenoglicóis/química , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície
11.
Sci Rep ; 8(1): 853, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339818

RESUMO

Cattle are subject to economically-important respiratory tract infections by various bacterial and viral pathogens and there is an urgent need for the development of more realistic in vitro models of the bovine respiratory tract to improve our knowledge of disease pathogenesis. In the present study, we have optimized the culture conditions in serum-free medium that allow bovine bronchial epithelial cells (BBECs) grown at an air-liquid interface to differentiate into a three-dimensional epithelium that is highly representative of the bovine airway. Epidermal growth factor was required to trigger both proliferation and differentiation of BBECs whilst retinoic acid was also essential for mucociliary differentiation. Triiodothyronine was demonstrated not to be important for the differentiation of BBECs. Oxygen concentration had a minimal effect although optimal ciliation was achieved when BBECs were cultured at 14% oxygen tension. Insert pore-density had a significant effect on the growth and differentiation of BBECs; a high-pore-density was required to trigger optimum differentiation. The established BBEC model will have wide-ranging applications for the study of bacterial and viral infections of the bovine respiratory tract; it will contribute to the development of improved vaccines and therapeutics and will reduce the use of cattle in in vivo experimentation.


Assuntos
Brônquios/citologia , Células Epiteliais/citologia , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Oxigênio/metabolismo , Tretinoína/farmacologia
12.
J Tissue Eng ; 9: 2041731418810093, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627418

RESUMO

Disseminated breast cancer cells have the capacity to metastasise to the bone marrow and reside in a dormant state within the mesenchymal stem cell niche. Research has focussed on paracrine signalling factors, such as soluble proteins, within the microenvironment. However, it is now clear extracellular vesicles secreted by resident mesenchymal stem cells into this microenvironment also play a key role in the initiation of dormancy. Dormancy encourages reduced cell proliferation and migration, while upregulating cell adhesion, thus retaining the cancer cells within the bone marrow microenvironment. Here, MCF7 breast cancer cells were treated with mesenchymal stem cell-derived extracellular vesicles, resulting in reduced migration in two-dimensional and three-dimensional culture, with reduced cell proliferation and enhanced adhesion, collectively supporting cancer cell dormancy.

13.
PLoS One ; 12(7): e0181583, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28746416

RESUMO

The respiratory tract and lungs are subject to diverse pathologies with wide-ranging implications for both human and animal welfare. The development and detailed characterization of cell culture models for studying such forms of disease is of critical importance. In recent years the use of air-liquid interface (ALI)-cultured airway epithelial cells has increased markedly, as this method of culture results in the formation of a highly representative, organotypic in vitro model system. In this study we have expanded on previous knowledge of differentiated ovine tracheal epithelial cells by analysing the progression of differentiation over an extensive time course at an ALI. We observed a pseudo-stratified epithelium with ciliation and a concurrent increase in cell layer thickness from 9 days post-ALI with ciliation approaching a maximum level at day 24. A similar pattern was observed with respect to mucus production with intensely stained PAS-positive cells appearing at day 12. Ultrastructural analysis by SEM confirmed the presence of both ciliated cells and mucus globules on the epithelial surface within this time-frame. Trans-epithelial electrical resistance (TEER) peaked at 1049 Ω × cm2 as the cell layer became confluent, followed by a subsequent reduction as differentiation proceeded and stabilization at ~200 Ω × cm2. Importantly, little deterioration or de-differentiation was observed over the 45 day time-course indicating that the model is suitable for long-term experiments.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Traqueia/citologia , Ar , Animais , Atmosfera/química , Células Cultivadas , Cílios/fisiologia , Meios de Cultura/química , Impedância Elétrica , Células Epiteliais/ultraestrutura , Humanos , Cinética , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Muco/metabolismo , Reação do Ácido Periódico de Schiff , Ovinos , Junções Íntimas/metabolismo , Fatores de Tempo
14.
ACS Nano ; 10(9): 8346-54, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27602872

RESUMO

The bone marrow niche represents a specialized environment that regulates mesenchymal stem cell quiescence and self-renewal, yet fosters stem cell migration and differentiation upon demand. An in vitro model that embodies these features would open up the ability to perform detailed study of stem cell behavior. In this paper we present a simple bone marrow-like niche model, which comprises of nanomagnetically levitated stem cells cultured as multicellular spheroids within a type I collagen gel. The stem cells maintained are nestin positive and remain quiescent until regenerative demand is placed upon them. In response to coculture wounding, they migrate and appropriately differentiate upon engraftment. This tissue engineered regeneration-responsive bone marrow-like niche model will allow for greater understanding of stem cell response to injury and also facilitate as a testing platform for drug candidates in a multiwell plate format.


Assuntos
Células da Medula Óssea , Diferenciação Celular , Células-Tronco Mesenquimais , Regeneração , Engenharia Tecidual , Medula Óssea , Movimento Celular , Células Cultivadas , Humanos , Nicho de Células-Tronco
15.
Nanomedicine (Lond) ; 10(16): 2513-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26302331

RESUMO

AIMS: RNAi is a powerful tool for gene silencing that can be used to reduce undesirable overexpression of oncogenes as a novel form of cancer treatment. However, when using RNAi as a therapeutic tool there is potential for associated gene effects. This study aimed to utilize gold nanoparticles to deliver siRNA into HeLa cells. RESULTS: Knockdown of the c-myc oncogene by RNAi, at the RNA, protein and cell proliferation level was achieved, while also identifying associated gene responses. DISCUSSION: The gold nanoparticles used in this study present an excellent delivery platform for siRNA, but do note associated gene changes. CONCLUSION: The study highlights the need to more widely assess the cell physiological response to RNAi treatment, rather than focus on the immediate RNA levels.


Assuntos
Técnicas de Silenciamento de Genes , Ouro/química , Nanopartículas Metálicas/química , RNA Interferente Pequeno/genética , Apoptose , Ciclo Celular , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase
16.
ACS Nano ; 6(9): 8316-24, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22882598

RESUMO

Over the past decade, the capability of double-stranded RNAs to interfere with gene expression has driven new therapeutic approaches. Since small interfering RNA (siRNAs, 21 base pair double-stranded RNA) was shown to be able to elicit RNA interference (RNAi), efforts were directed toward the development of efficient delivery systems to preserve siRNA bioactivity throughout the delivery route, from the administration site to the target cell. Here we provide evidence of RNAi triggering, specifically silencing c-myc protooncogene, via the synthesis of a library of novel multifunctional gold nanoparticles (AuNPs). The efficiency of the AuNPs is demonstrated using a hierarchical approach including three biological systems of increasing complexity: in vitro cultured human cells, in vivo invertebrate (freshwater polyp, Hydra ), and in vivo vertebrate (mouse) models. Our synthetic methodology involved fine-tuning of multiple structural and functional moieties. Selection of the most active functionalities was assisted step-by-step through functional testing that adopted this hierarchical strategy. Merging these chemical and biological approaches led to a safe, nonpathogenic, self-tracking, and universally valid nanocarrier that could be exploited for therapeutic RNAi.


Assuntos
Cristalização/métodos , Inativação Gênica , Ouro/química , Nanocápsulas/química , Nanocápsulas/ultraestrutura , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção/métodos , Humanos , Teste de Materiais , Tamanho da Partícula
17.
Biomed Mater ; 6(3): 035005, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21505230

RESUMO

Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 µm wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.


Assuntos
Fibroblastos/enzimologia , Regulação Enzimológica da Expressão Gênica , Metaloproteinases da Matriz/biossíntese , Materiais Biocompatíveis/química , Linhagem Celular , Colágeno/metabolismo , Fibroblastos/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Invasividade Neoplásica , Metástase Neoplásica , Poliésteres/química , Quartzo/química , Propriedades de Superfície , Fatores de Tempo
18.
Biomaterials ; 31(15): 4392-400, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20189242

RESUMO

Magnetic nanoparticles are widely used in bioapplications such as imaging (MRI), targeted delivery (drugs/genes) and cell transfection (magnetofection). Historically, the impermeable nature of both the plasma and nuclear membranes hinder potential. Researchers combat this by developing techniques to enhance cellular and nuclear uptake. Two current popular methods are using external magnetic fields to remotely control particle direction or functionalising the nanoparticles with a cell penetrating peptide (e.g. tat); both of which facilitate cell entry. This paper compares the success of both methods in terms of nanoparticle uptake, analysing the type of magnetic forces the particles experience, and determines gross cell response in terms of morphology and structure and changes at the gene level via microarray analysis. Results indicated that both methods enhanced uptake via a caveolin dependent manner, with tat peptide being the more efficient and achieving nuclear uptake. On comparison to control cells, many groups of gene changes were observed in response to the particles. Importantly, the magnetic field also caused many change in gene expression, regardless of the nanoparticles, and appeared to cause F-actin alignment in the cells. Results suggest that static fields should be modelled and analysed prior to application in culture as cells clearly respond appropriately. Furthermore, the use of cell penetrating peptides may prove more beneficial in terms of enhancing uptake and maintaining cell homeostasis than a magnetic field.


Assuntos
Endocitose/fisiologia , Magnetismo , Nanopartículas Metálicas , Peptídeos/metabolismo , Caveolinas/metabolismo , Linhagem Celular , Clatrina/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Expressão Gênica , Humanos , Teste de Materiais , Nanopartículas Metálicas/química , Análise em Microsséries/métodos , Peptídeos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Produtos do Gene tat do Vírus da Imunodeficiência Humana
20.
Biomaterials ; 25(23): 5405-13, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15130725

RESUMO

Magnetic nanoparticles have been used for many years as magnetic resonance imaging contrast agents. Despite the fact that there are currently several dextran-coated iron oxide nanoparticles are in preclinical and clinical use, there is very little information available concerning the influence such particles have on cells in culture. The prerequisite for particles employed as contrast agents is capture and subsequent uptake by cells. This study involved the use of magnetic nanoparticles synthesised and derivatised with dextran, compared to similar underivatised plain particles. The influence in vitro was assessed using human dermal fibroblasts and various techniques to observe cell-particles interaction, including light and fluorescence microscopy, scanning and transmission electron microscopy. The results indicate that although both the uncoated and the dextran-derivatised particles are uptaken into the cell, the derivatised particles induce alterations in cell behaviour and morphology distinct from the plain particles, suggesting that cell response is dependent on the particles coating.


Assuntos
Materiais Revestidos Biocompatíveis/farmacocinética , Dextranos/farmacocinética , Compostos Férricos/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Nanoestruturas/química , Adsorção , Apoptose/efeitos dos fármacos , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Dextranos/síntese química , Dextranos/farmacologia , Fibroblastos/efeitos dos fármacos , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA