Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2856, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310132

RESUMO

Understanding the complex biomechanical tumor microenvironment (TME) is of critical importance in developing the next generation of anti-cancer treatment strategies. This is especially true in epithelial ovarian cancer (EOC), the deadliest of the gynecologic cancers due to recurrent disease or chemoresistance. However, current models of EOC progression provide little control or ability to monitor how changes in biomechanical parameters alter EOC cell behaviors. In this study, we present a microfluidic device designed to permit biomechanical investigations of the ovarian TME. Using this microtissue system, we describe how biomechanical stimulation in the form of tensile strains upregulate phosphorylation of HSP27, a heat shock protein implicated in ovarian cancer chemoresistance. Furthermore, EOC cells treated with strain demonstrate decreased response to paclitaxel in the in vitro vascularized TME model. The results provide a direct link to biomechanical regulation of HSP27 as a mediator of EOC chemoresistance, possibly explaining the failure of such therapies in some patients. The work presented here lays a foundation to elucidating mechanobiological regulation of EOC progression, including chemoresistance and could provide novel targets for anti-cancer therapeutics.


Assuntos
Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP27/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Microambiente Tumoral
2.
BMC Biol ; 21(1): 290, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072992

RESUMO

BACKGROUND: Angiogenesis, or the growth of new vasculature from existing blood vessels, is widely considered a primary hallmark of cancer progression. When a tumor is small, diffusion is sufficient to receive essential nutrients; however, as the tumor grows, a vascular supply is needed to deliver oxygen and nutrients into the increasing mass. Several anti-angiogenic cancer therapies target VEGF and the receptor VEGFR-2, which are major promoters of blood vessel development. Unfortunately, many of these cancer treatments fail to completely stop angiogenesis in the tumor microenvironment (TME). Since these therapies focus on the biochemical activation of VEGFR-2 via VEGF ligand binding, we propose that mechanical cues, particularly those found in the TME, may be a source of VEGFR-2 activation that promotes growth of blood vessel networks even in the presence of VEGF and VEGFR-2 inhibitors. RESULTS: In this paper, we analyzed phosphorylation patterns of VEGFR-2, particularly at Y1054/Y1059 and Y1214, stimulated via either VEGF or biomechanical stimulation in the form of tensile strains. Our results show prolonged and enhanced activation at both Y1054/Y1059 and Y1214 residues when endothelial cells were stimulated with strain, VEGF, or a combination of both. We also analyzed Src expression, which is downstream of VEGFR-2 and can be activated through strain or the presence of VEGF. Finally, we used fibrin gels and microfluidic devices as 3D microtissue models to simulate the TME. We determined that regions of mechanical strain promoted increased vessel growth, even with VEGFR-2 inhibition through SU5416. CONCLUSIONS: Overall, understanding both the effects that biomechanical and biochemical stimuli have on VEGFR-2 activation and angiogenesis is an important factor in developing effective anti-angiogenic therapies. This paper shows that VEGFR-2 can be mechanically activated through strain, which likely contributes to increased angiogenesis in the TME. These proof-of-concept studies show that small molecular inhibitors of VEGFR-2 do not fully prevent angiogenesis in 3D TME models when mechanical strains are introduced.


Assuntos
Neoplasias , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
J Tissue Eng ; 12: 20417314211055015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820113

RESUMO

Among gynecologic malignancies, ovarian cancer (OC) has the poorest survival rate, and its clinical management remains challenging due to the high rate of recurrence and chemoresistance. Improving survival for these patients is critical, although this requires the ability to translate preclinical studies to actual patient care: bench to bedside and back. Our objective was to develop a preclinical model that accurately represents tumor biology and its microenvironment. We utilized SKOV-3, OVCAR-8, and CS-99 cell lines to show that this model was suitable for in vitro assessment of cell proliferation. We tested OC cells independently and in co-culture with cancer associated fibroblasts (CAFs) or immune cells. Additionally, we used patient-derived ovarian carcinoma and carcinosarcoma samples to show that the system maintains the histologic morphology of the primary tissue after 7 days. Moreover, we tested the response to chemotherapy using both cell lines and patient-derived tumor specimens and confirmed that cell death was significantly higher in the treated group compared to the vehicle group. Finally, we immune profiled the 3-D model containing patient tissue after several days in the bioreactor system and revealed that the immune populations are still present. Our data suggest that this model is a suitable preclinical model to aid in research that will ultimately impact the treatment of patients with gynecologic cancer.

4.
Ann Plast Surg ; 86(6S Suppl 5): S628-S631, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100824

RESUMO

INTRODUCTION: Wound healing affects millions of people annually. After injury, keratinocytes from the wound edge proliferate, migrate, and differentiate to recapitulate the 3-dimensional (3D) structure needed to provide a barrier function. If the wound is too large, skin grafting may be required. We are interested in discovering novel strategies to enhance the wound healing process. It may be possible to recreate a viable and histologically accurate skin tissue using 3D printing. We hypothesize that keratinocytes and dermal fibroblasts can be bioprinted into a viable skin substitute. METHODS: Adult human dermal fibroblasts (HDFa) and adult human epidermal keratinocytes (HEKa) were cultured and subsequently printed with a 3D bioprinter within a hydrogel scaffold. After printing the HDFa and HEKa separately, cell viability and histological appearance were determined by sectioning the printed tissue and performing hematoxylin and eosin staining. The stained histological sections were analyzed for tissue morphology. RESULTS: The HEKa and HDFa cells suspended in the hydrogel were successfully printed into 3D scaffolds that resembled skin with hematoxylin and eosin staining. CONCLUSIONS: The HEKa and HDFa cells can be grown on 3D-printed hydrogels successfully. In addition, HEKa and HDFa cells can survive and grow when suspended in a hydrogel and 3D printed. Future potential applications of these results could lead to the creation of viable skin tissue for wound healing and surgical repair.


Assuntos
Pele Artificial , Células Cultivadas , Fibroblastos , Humanos , Queratinócitos , Impressão Tridimensional , Pele , Engenharia Tecidual
5.
Front Oncol ; 11: 654922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968758

RESUMO

Tumor-stromal interactions within the tumor microenvironment (TME) influence lung cancer progression and response to therapeutic interventions, yet traditional in vitro studies fail to replicate the complexity of these interactions. Herein, we developed three-dimensional (3D) lung tumor models that mimic the human TME and demonstrate tumor-stromal crosstalk mediated by extracellular vesicles (EVs). EVs released by tumor cells, independent of p53 status, and fibroblasts within the TME mediate immunomodulatory effects; specifically, monocyte/macrophage polarization to a tumor-promoting M2 phenotype within this 3D-TME. Additionally, immune checkpoint inhibition in a 3D model that included T cells showed an inhibition of tumor growth and reduced hypoxia within the TME. Thus, perfused 3D tumor models incorporating diverse cell types provide novel insights into EV-mediated tumor-immune interactions and immune-modulation for existing and emerging cancer therapies.

6.
Front Med (Lausanne) ; 8: 643793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928104

RESUMO

Cellular exosome-mediated crosstalk in tumor microenvironment (TME) is a critical component of anti-tumor immune responses. In addition to particle size, exosome transport and uptake by target cells is influenced by physical and physiological factors, including interstitial fluid pressure, and exosome concentration. These variables differ under both normal and pathological conditions, including cancer. The transport of exosomes in TME is governed by interstitial flow and diffusion. Based on these determinants, mathematical models were adapted to simulate the transport of exosomes in the TME with specified exosome release rates from the tumor cells. In this study, the significance of spatial relationship in exosome-mediated intercellular communication was established by treating their movement in the TME as a continuum using a transport equation, with advection due to interstitial flow and diffusion due to concentration gradients. To quantify the rate of release of exosomes by biomechanical forces acting on the tumor cells, we used a transwell platform with confluent triple negative breast cancer cells 4T1.2 seeded in BioFlex plates exposed to an oscillatory force. Exosome release rates were quantified from 4T1.2 cells seeded at the bottom of the well following the application of either no force or an oscillatory force, and these rates were used to model exosome transport in the transwell. The simulations predicted that a larger number of exosomes reached the membrane of the transwell for 4T1.2 cells exposed to the oscillatory force when compared to controls. Additionally, we simulated the interstitial fluid flow and exosome transport in a 2-dimensional TME with macrophages, T cells, and mixtures of these two populations at two different stages of a tumor growth. Computational simulations were carried out using the commercial computational simulation package, ANSYS/Fluent. The results of this study indicated higher exosome concentrations and larger interstitial fluid pressure at the later stages of the tumor growth. Quantifying the release of exosomes by cancer cells, their transport through the TME, and their concentration in TME will afford a deeper understanding of the mechanisms of these interactions and aid in deriving predictive models for therapeutic intervention.

7.
Front Endocrinol (Lausanne) ; 12: 710009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002949

RESUMO

Few models exist for studying neuroendocrine tumors (NETs), and there are mounting concerns that the currently available array of cell lines is not representative of NET biology. The lack of stable patient-derived NET xenograft models further limits the scientific community's ability to make conclusions about NETs and their response to therapy in patients. To address these limitations, we propose the use of an ex vivo 3D flow-perfusion bioreactor system for culturing and studying patient-derived NET surrogates. Herein, we demonstrate the utility of the bioreactor system for culturing NET surrogates and provide methods for evaluating the efficacy of therapeutic agents on human NET cell line xenograft constructs and patient-derived NET surrogates. We also demonstrate that patient-derived NET tissues can be propagated using the bioreactor system and investigate the near-infrared (NIR) dye IR-783 for its use in monitoring their status within the bioreactor. The results indicate that the bioreactor system and similar 3D culture models may be valuable tools for culturing patient-derived NETs and monitoring their response to therapy ex vivo.


Assuntos
Reatores Biológicos/estatística & dados numéricos , Técnicas de Cultura de Células/métodos , Neoplasias Intestinais/patologia , Neoplasias Pulmonares/patologia , Modelos Biológicos , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Gástricas/patologia , Neoplasias da Glândula Tireoide/patologia , Animais , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Lab Invest ; 100(12): 1503-1516, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32572176

RESUMO

Breast cancer (BCa) proliferates within a complex, three-dimensional microenvironment amid heterogeneous biochemical and biophysical cues. Understanding how mechanical forces within the tumor microenvironment (TME) regulate BCa phenotype is of great interest. We demonstrate that mechanical strain enhanced the proliferation and migration of both estrogen receptor+ and triple-negative (TNBC) human and mouse BCa cells. Furthermore, a critical role for exosomes derived from cells subjected to mechanical strain in these pro-tumorigenic effects was identified. Exosome production by TNBC cells increased upon exposure to oscillatory strain (OS), which correlated with elevated cell proliferation. Using a syngeneic, orthotopic mouse model of TNBC, we identified that preconditioning BCa cells with OS significantly increased tumor growth and myeloid-derived suppressor cells (MDSCs) and M2 macrophages in the TME. This pro-tumorigenic myeloid cell enrichment also correlated with a decrease in CD8+ T cells. An increase in PD-L1+ exosome release from BCa cells following OS supported additive T cell inhibitory functions in the TME. The role of exosomes in MDSC and M2 macrophage was confirmed in vivo by cytotracking fluorescent exosomes, derived from labeled 4T1.2 cells, preconditioned with OS. In addition, in vivo internalization and intratumoral localization of tumor-cell derived exosomes was observed within MDSCs, M2 macrophages, and CD45-negative cell populations following direct injection of fluorescently-labeled exosomes. Our data demonstrate that exposure to mechanical strain promotes invasive and pro-tumorigenic phenotypes in BCa cells, indicating that mechanical strain can impact the growth and proliferation of cancer cell, alter exosome production by BCa, and induce immunosuppression in the TME by dampening anti-tumor immunity.


Assuntos
Fenômenos Biomecânicos , Neoplasias da Mama , Estresse Mecânico , Microambiente Tumoral , Animais , Fenômenos Biomecânicos/imunologia , Fenômenos Biomecânicos/fisiologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/fisiopatologia , Carcinogênese , Movimento Celular , Proliferação de Células , Exossomos/metabolismo , Feminino , Humanos , Tolerância Imunológica , Células MCF-7 , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia
9.
Surgery ; 167(1): 197-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31543319

RESUMO

BACKGROUND: As patient-derived xenografts and other preclinical models of neuroendocrine tumors for testing personalized therapeutics are lacking, we have developed a perfused, 3D bioreactor model to culture tumor surrogates from patient-derived neuroendocrine tumors. This work evaluates the duration of surrogate culture and surrogate response to a novel antibody-drug conjugate. METHODS: Twenty-seven patient-derived neuroendocrine tumors were cultured. Histologic sections of a pancreatic neuroendocrine tumor xenograft (BON-1) tumor were assessed for SSTR2 expression before tumor implantation into 2 bioreactors. One surrogate was treated with an antibody-drug conjugate composed of an anti-mitotic Monomethyl auristatin-E linked to a somatostatin receptor 2 antibody. Viability and therapeutic response were assessed by pre-imaging incubation with IR-783 and the RealTime-Glo AnnexinV Apoptosis and Necrosis Assay (Promega Corporation, Madison, WI) over 6 days. A primary human pancreatic neuroendocrine tumor was evaluated similarly. RESULTS: Mean surrogate growth duration was 34.8 days. Treated BON-1 surrogates exhibited less proliferation (1.2 vs 1.9-fold) and greater apoptosis (1.5 vs 1.1-fold) than controls, whereas treated patient-derived neuroendocrine tumor bioreactors exhibited greater degrees of apoptosis (13- vs 9-fold) and necrosis (2.5- vs 1.6-fold). CONCLUSION: Patient-derived neuroendocrine tumor surrogates can be cultured reliably within the bioreactor. This model can be used to evaluate the efficacy of antibody-guided chemotherapy ex vivo and may be useful for predicting clinical responses.


Assuntos
Reatores Biológicos , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Imunoconjugados/farmacologia , Tumores Neuroendócrinos/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Cultura Primária de Células/instrumentação , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Imunoconjugados/uso terapêutico , Masculino , Camundongos , Terapia de Alvo Molecular/métodos , Tumores Neuroendócrinos/patologia , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Neoplasias Pancreáticas/patologia , Cultura Primária de Células/métodos , Receptores de Somatostatina/antagonistas & inibidores , Reprodutibilidade dos Testes , Células Tumorais Cultivadas
10.
Cell ; 175(6): 1481-1491.e13, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500535

RESUMO

Phase transitions involving biomolecular liquids are a fundamental mechanism underlying intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and how physical forces associated with nucleation, growth, and wetting of liquid condensates can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions. A minimal physical model explains how this stiffness sensitivity arises from lower mechanical energy associated with deforming softer genomic regions. Targeted genomic loci can nonetheless be mechanically pulled together through surface tension-driven coalescence. Nuclear condensates may thus function as mechano-active chromatin filters, physically pulling in targeted genomic loci while pushing out non-targeted regions of the neighboring genome. VIDEO ABSTRACT.


Assuntos
Nucléolo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Genoma Humano , Proteínas Intrinsicamente Desordenadas/metabolismo , Transição de Fase , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Células NIH 3T3
11.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30135120

RESUMO

Spanins are bacteriophage lysis proteins responsible for disruption of the outer membrane, the final step of Gram-negative host lysis. The absence of spanins results in a terminal phenotype of fragile spherical cells. The phage T1 employs a unimolecular spanin gp11 that has an N-terminal lipoylation signal and a C-terminal transmembrane domain. Upon maturation and localization, gp11 ends up as an outer membrane lipoprotein with a C-terminal transmembrane domain embedded in the inner membrane, thus connecting both membranes as a covalent polypeptide chain. Unlike the two-component spanins encoded by most of the other phages, including lambda, the unimolecular spanins have not been studied extensively. In this work, we show that the gp11 mutants lacking either membrane localization signal were nonfunctional and conferred a partially dominant phenotype. Translation from internal start sites within the gp11 coding sequence generated a shorter product which exhibited a negative regulatory effect on gp11 function. Fluorescence spectroscopy time-lapse videos of gp11-GFP expression showed gp11 accumulated in distinct punctate foci, suggesting localized clusters assembled within the peptidoglycan meshwork. In addition, gp11 was shown to mediate lysis in the absence of holin and endolysin function when peptidoglycan density was depleted by starvation for murein precursors. This result indicates that the peptidoglycan is a negative regulator of gp11 function. This supports a model in which gp11 acts by fusing the inner and outer membranes, a mode of action analogous to but mechanistically distinct from that proposed for the two-component spanin systems.IMPORTANCE Spanins have been proposed to fuse the cytoplasmic and outer membranes during phage lysis. Recent work with the lambda spanins Rz-Rz1, which are similar to class I viral fusion proteins, has shed light on the functional domains and requirements for two-component spanin function. Here we report, for the first time, a genetic and biochemical approach to characterize unimolecular spanins, which are structurally and mechanistically different from two-component spanins. Considering similar predicted secondary structures within the ectodomains, unimolecular spanins can be regarded as a prokaryotic version of type II viral membrane fusion proteins. This study not only adds to our understanding of regulation of phage lysis at various levels but also provides a prokaryotic genetically tractable platform for interrogating class II-like membrane fusion proteins.


Assuntos
Bacteriólise/genética , Endopeptidases/genética , Siphoviridae/genética , Proteínas Virais/genética , Escherichia coli/virologia , Fusão de Membrana/fisiologia , Proteínas de Membrana/genética , Estrutura Secundária de Proteína
12.
Sci Rep ; 7(1): 14167, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074857

RESUMO

The use of in vitro, engineered surrogates in the field of cancer research is of interest for studies involving mechanisms of growth and metastasis, and response to therapeutic intervention. While biomimetic surrogates better model human disease, their complex composition and dimensionality make them challenging to evaluate in a real-time manner. This feature has hindered the broad implementation of these models, particularly in drug discovery. Herein, several methods and approaches for the real-time, non-invasive analysis of cell growth and response to treatment in tissue-engineered, three-dimensional models of breast cancer are presented. The tissue-engineered surrogates used to demonstrate these methods consist of breast cancer epithelial cells and fibroblasts within a three dimensional volume of extracellular matrix and are continuously perfused with nutrients via a bioreactor system. Growth of the surrogates over time was measured using optical in vivo (IVIS) imaging. Morphologic changes in specific cell populations were evaluated by multi-photon confocal microscopy. Response of the surrogates to treatment with paclitaxel was measured by optical imaging and by analysis of lactate dehydrogenase and caspase-cleaved cytokeratin 18 in the perfused medium. Each method described can be repeatedly performed during culture, allowing for real-time, longitudinal analysis of cell populations within engineered tumor models.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Reatores Biológicos , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Desenho de Equipamento , Matriz Extracelular/patologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Queratina-18/metabolismo , L-Lactato Desidrogenase/metabolismo , Medições Luminescentes/métodos , Camundongos , Microscopia Confocal , Paclitaxel/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Tissue Eng Regen Med ; 11(4): 1242-1250, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-25950420

RESUMO

There is a need for preclinical testing systems that predict the efficacy, safety and pharmacokinetics of cancer therapies better than existing in vitro and in vivo animal models. An approach to the development of predictive in vitro systems is to more closely recapitulate the cellular and spatial complexity of human cancers. One limitation of using current in vitro systems to model cancers is the lack of an appropriately large volume to accommodate the development of this complexity over time. To address this limitation, we have designed and constructed a novel flow-perfusion bioreactor system that can support large-volume, engineered tissue comprised of multicellular cancer surrogates by modifying current microfluidic devices. Key features of this technology are a three-dimensional (3D) volume (1.2 cm3 ) that has greater tissue thickness than is utilized in existing microfluidic systems and the ability to perfuse the volume, enabling the development of realistic tumour geometry. The constructs were fabricated by infiltrating porous carbon foams with an extracellular matrix (ECM) hydrogel and engineering through-microchannels. The carbon foam structurally supported the hydrogel and microchannel patency for up to 161 h. The ECM hydrogel was shown to adhere to the carbon foam and polydimethylsiloxane flow chamber, which housed the hydrogel-foam construct, when surfaces were coated with glutaraldehyde (carbon foam) and nitric acid (polydimethylsiloxane). Additionally, the viability of breast cancer cells and fibroblasts was higher in the presence of perfused microchannels in comparison to similar preparations without microchannels or perfusion. Therefore, the flow-perfusion bioreactor system supports cell viability in volume and stromal contexts that are physiologically-relevant. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Reatores Biológicos , Neoplasias da Mama/patologia , Perfusão , Reologia , Engenharia Tecidual/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura , Feminino , Humanos , Alicerces Teciduais/química , Molhabilidade
14.
Ann Biomed Eng ; 45(4): 1027-1038, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27770219

RESUMO

A preclinical testing model for cancer therapeutics that replicates in vivo physiology is needed to accurately describe drug delivery and efficacy prior to clinical trials. To develop an in vitro model of breast cancer that mimics in vivo drug/nutrient delivery as well as physiological size and bio-composition, it is essential to describe the mass transport quantitatively. The objective of the present study was to develop in vitro and computational models to measure mass transport from a perfusion system into a 3D extracellular matrix (ECM). A perfusion-flow bioreactor system was used to control and quantify the mass transport of a macromolecule within an ECM hydrogel with embedded through-channels. The material properties, fluid mechanics, and structure of the construct quantified in the in vitro model were input into, and served as validation of, the computational fluid dynamics (CFD) simulation. Results showed that advection and diffusion played a complementary role in mass transport. As the CFD simulation becomes more complex with embedded blood vessels and cancer cells, it will become more recapitulative of in vivo breast cancers. This study is a step toward development of a preclinical testing platform that will be more predictive of patient response to therapeutics than two-dimensional cell culture.


Assuntos
Neoplasias da Mama , Colágeno , Simulação por Computador , Hidrogéis , Laminina , Modelos Biológicos , Neovascularização Patológica , Proteoglicanas , Transporte Biológico Ativo , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Combinação de Medicamentos , Feminino , Humanos , Hidrodinâmica , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
15.
J Tissue Eng ; 7: 2041731416660739, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27516850

RESUMO

Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter.

16.
Acta Biomater ; 41: 224-34, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27286678

RESUMO

UNLABELLED: For three-dimensional tissue engineering scaffolds, the major challenges of hydrogels are poor mechanical integrity and difficulty in handling during implantation. In contrast, electrospun scaffolds provide tunable mechanical properties and high porosity; but, are limited in cell encapsulation. To overcome these limitations, we developed a "hybrid nanosack" by combination of a peptide amphiphile (PA) nanomatrix gel and an electrospun poly (ε-caprolactone) (ePCL) nanofiber sheet with porous crater-like structures. This hybrid nanosack design synergistically possessed the characteristics of both approaches. In this study, the hybrid nanosack was applied to enhance local angiogenesis in the omentum, which is required of tissue engineering scaffolds for graft survival. The ePCL sheet with porous crater-like structures improved cell and blood vessel penetration through the hybrid nanosack. The hybrid nanosack also provided multi-stage fibroblast growth factor-2 (FGF-2) release kinetics for stimulating local angiogenesis. The hybrid nanosack was implanted into rat omentum for 14days and vascularization was analyzed by micro-CT and immunohistochemistry; the data clearly demonstrated that both FGF-2 delivery and porous crater-like structures work synergistically to enhance blood vessel formation within the hybrid nanosack. Therefore, the hybrid nanosack will provide a new strategy for engineering scaffolds to achieve graft survival in the omentum by stimulating local vascularization, thus overcoming the limitations of current strategies. STATEMENT OF SIGNIFICANCE: For three-dimensional tissue engineering scaffolds, the major challenges of hydrogels are poor mechanical integrity and difficulty in handling during implantation. In contrast, electrospun scaffolds provide tunable mechanical properties and high porosity; but, are limited in cell encapsulation. To overcome these limitations, we developed a "hybrid nanosack" by combination of a peptide amphiphile (PA) nanomatrix gel and an electrospun poly (ε-caprolactone) (ePCL) nanofiber sheet with porous crater-like structures. This design synergistically possessed the characteristics of both approaches. In this study, the hybrid nanosack was applied to enhance local angiogenesis in the omentum, which is required of tissue engineering scaffolds for graft survival. The hybrid nanosack was implanted into rat omentum for 14days and vascularization was analyzed by micro-CT and immunohistochemistry. We demonstrate that both FGF-2 delivery and porous crater-like structures work synergistically to enhance blood vessel formation within the hybrid nanosack. Therefore, the hybrid nanosack will provide a new strategy for engineering scaffolds to achieve graft survival in the omentum by stimulating local vascularization, thus overcoming the limitations of current strategies.


Assuntos
Materiais Biocompatíveis/farmacologia , Nanofibras/química , Neovascularização Fisiológica/efeitos dos fármacos , Omento/irrigação sanguínea , Alicerces Teciduais/química , Animais , Ensaio de Imunoadsorção Enzimática , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Cinética , Omento/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Poliésteres/farmacologia , Porosidade , Ratos , Microtomografia por Raio-X
17.
J Vis Exp ; (111)2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27214165

RESUMO

Three dimensional (3D) culture is a more physiologically relevant method to model cell behavior in vitro than two dimensional culture. Carcinomas, including breast carcinomas, are complex 3D tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix (ECM). Yet most in vitro models of breast carcinoma consist only of cancer epithelial cells, omitting the stroma and, therefore, the 3D architecture of a tumor in vivo. Appropriate 3D modeling of carcinoma is important for accurate understanding of tumor biology, behavior, and response to therapy. However, the duration of culture and volume of 3D models is limited by the availability of oxygen and nutrients within the culture. Herein, we demonstrate a method in which breast carcinoma epithelial cells and stromal fibroblasts are incorporated into ECM to generate a 3D breast cancer surrogate that includes stroma and can be cultured as a solid 3D structure or by using a perfusion bioreactor system to deliver oxygen and nutrients. Following setup and an initial growth period, surrogates can be used for preclinical drug testing. Alternatively, the cellular and matrix components of the surrogate can be modified to address a variety of biological questions. After culture, surrogates are fixed and processed to paraffin, in a manner similar to the handling of clinical breast carcinoma specimens, for evaluation of parameters of interest. The evaluation of one such parameter, the density of cells present, is explained, where ImageJ and CellProfiler image analysis software systems are applied to photomicrographs of histologic sections of surrogates to quantify the number of nucleated cells per area. This can be used as an indicator of the change in cell number over time or the change in cell number resulting from varying growth conditions and treatments.


Assuntos
Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Células Epiteliais/patologia , Matriz Extracelular/patologia , Fibroblastos/patologia , Humanos
18.
Mol Microbiol ; 88(1): 35-47, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23387988

RESUMO

The λ Rz and Rz1 proteins are the subunits of the spanin complex, required for the disruption of the outer membrane during host lysis. Rz, the inner membrane or i-spanin, has a largely alpha-helical periplasmic domain, whereas Rz1, the outer membrane or o-spanin, has a 25% proline content with no predicted secondary structure. We report that both Rz and Rz1 accumulate as homodimers covalently linked by intermolecular disulfide bonds involving all three Cys residues, two in Rz and one in Rz1. Moreover, of these three intermolecular disulfides, spanin function requires the presence of at least one of the two linkages nearest the Rz-Rz1 C-terminal interaction domains; i.e. either the Rz1-Rz1 disulfide or the distal Rz-Rz disulfide link. In a dsbC host, but not in dsbA or dsbA dsbC hosts, formation of the covalent homodimers of Rz is severely reduced and outer membrane disruption is significantly delayed, suggesting that the spanin pathway normally proceeds through DsbA-mediated formation of an intramolecular disulfide in Rz. In contrast, efficient formation of the Rz1-Rz1 disulfide requires DsbA. Finally, Dsb-independent formation of the covalent homodimer of either subunit requires the presence of the other, presumably as a template for close apposition of the thiols.


Assuntos
Bacteriófago lambda/metabolismo , Dissulfetos/metabolismo , Multimerização Proteica , Subunidades Proteicas/metabolismo , Proteínas Virais/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Bacteriólise , Cisteína/metabolismo , Cinética , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , Subunidades Proteicas/química , Proteínas Virais/química
19.
BMC Genomics ; 13: 542, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23050599

RESUMO

BACKGROUND: The bacterium Caulobacter crescentus is a popular model for the study of cell cycle regulation and senescence. The large prolate siphophage phiCbK has been an important tool in C. crescentus biology, and has been studied in its own right as a model for viral morphogenesis. Although a system of some interest, to date little genomic information is available on phiCbK or its relatives. RESULTS: Five novel phiCbK-like C. crescentus bacteriophages, CcrMagneto, CcrSwift, CcrKarma, CcrRogue and CcrColossus, were isolated from the environment. The genomes of phage phiCbK and these five environmental phage isolates were obtained by 454 pyrosequencing. The phiCbK-like phage genomes range in size from 205 kb encoding 318 proteins (phiCbK) to 280 kb encoding 448 proteins (CcrColossus), and were found to contain nonpermuted terminal redundancies of 10 to 17 kb. A novel method of terminal ligation was developed to map genomic termini, which confirmed termini predicted by coverage analysis. This suggests that sequence coverage discontinuities may be useable as predictors of genomic termini in phage genomes. Genomic modules encoding virion morphogenesis, lysis and DNA replication proteins were identified. The phiCbK-like phages were also found to encode a number of intriguing proteins; all contain a clearly T7-like DNA polymerase, and five of the six encode a possible homolog of the C. crescentus cell cycle regulator GcrA, which may allow the phage to alter the host cell's replicative state. The structural proteome of phage phiCbK was determined, identifying the portal, major and minor capsid proteins, the tail tape measure and possible tail fiber proteins. All six phage genomes are clearly related; phiCbK, CcrMagneto, CcrSwift, CcrKarma and CcrRogue form a group related at the DNA level, while CcrColossus is more diverged but retains significant similarity at the protein level. CONCLUSIONS: Due to their lack of any apparent relationship to other described phages, this group is proposed as the founding cohort of a new phage type, the phiCbK-like phages. This work will serve as a foundation for future studies on morphogenesis, infection and phage-host interactions in C. crescentus.


Assuntos
Caulobacter crescentus/virologia , Genômica , Siphoviridae/genética , Sequência de Aminoácidos , Sequência de Bases , Caulobacter crescentus/citologia , Empacotamento do DNA , Replicação do DNA , DNA Viral/biossíntese , DNA Viral/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Genoma Viral/genética , Dados de Sequência Molecular , Filogenia , Biossíntese de Proteínas , Siphoviridae/fisiologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo
20.
Acta Biomater ; 7(1): 225-33, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20728588

RESUMO

Current cardiovascular therapies are limited by the loss of endothelium, restenosis and thrombosis. The goal of this study was to develop a biomimetic hybrid nanomatrix that combined the unique properties of electrospun polycaprolactone (ePCL) nanofibers with self-assembled peptide amphiphiles (PAs). ePCL nanofibers have interconnected nanoporous structures, but are hampered by a lack of surface bioactivity to control cellular behavior. It has been hypothesized that PAs could self-assemble onto the surface of ePCL nanofibers and endow them with the characteristic properties of native endothelium. The PAs, which comprised hydrophobic alkyl tails attached to functional hydrophilic peptide sequences, contained enzyme-mediated degradable sites coupled to either endothelial cell-adhesive ligands (YIGSR) or polylysine (KKKKK) nitric oxide (NO) donors. Two different PAs (PA-YIGSR and PA-KKKKK) were successfully synthesized and mixed in a 90:10 (YK) ratio to obtain PA-YK. PA-YK was reacted with pure NO to develop PA-YK-NO, which was then self-assembled onto ePCL nanofibers to generate a hybrid nanomatrix, ePCL-PA-YK-NO. Uniform coating of self-assembled PA nanofibers on ePCL was confirmed by transmission electron microscopy. Successful NO release from ePCL-PA-YK-NO was observed. ePCL-YK and ePCL-PA-YK-NO showed significantly increased adhesion of human umbilical vein endothelial cells (HUVECs). ePCL-PA-YK-NO also showed significantly increased proliferation of HUVECs and reduced smooth muscle cell proliferation. ePCL-PA-YK-NO also displayed significantly reduced platelet adhesion compared with ePCL, ePCL-PA-YK and a collagen control. These results indicate that this hybrid nanomatrix has great potential application in cardiovascular implants.


Assuntos
Materiais Biocompatíveis/farmacologia , Prótese Vascular , Nanopartículas/química , Peptídeos/farmacologia , Poliésteres/farmacologia , Tensoativos/farmacologia , Engenharia Tecidual/métodos , Sequência de Aminoácidos , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Dados de Sequência Molecular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nanopartículas/ultraestrutura , Óxido Nítrico/metabolismo , Peptídeos/química , Adesividade Plaquetária/efeitos dos fármacos , Veias Umbilicais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA