Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 7(8): 2370-2382, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34048219

RESUMO

A series of 43 antiviral corrole-based molecules have been tested on myxoma virus (Lausanne-like T1MYXV strain). An autofluorescent MYXV, with an ANCHOR cassette, has been used for the studies. A2B-fluorocorroles display various toxicities, from 40 being very toxic (CC50 = 1.7 µM) to nontoxic 38 (CC50 > 50 µM), whereas A3-fluorocorroles, with one to three fluorine atoms, are not toxic (with the exception of corroles 9, 10, and 22). In vitro, these compounds show a good selectivity index when used alone. Corrole 35 seems to be the most promising compound, which displays a high selectivity index with the lowest IC50. Interestingly, this "Hit" corrole is easy to synthesize in a two-step reaction. Upscaling production up to 25 g has been carried out for in vivo tests. In vivo studies on New Zealand white rabbits infected with myxoma virus show that symptoms are delayed and animal weight is increased upon treatment, while no acute toxicity of the corrole molecule was detected.


Assuntos
Myxoma virus , Porfirinas , Animais , Antivirais/farmacologia , Myxoma virus/genética , Coelhos
2.
Hum Gene Ther ; 32(3-4): 166-177, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33504260

RESUMO

Oncolytic viruses (OVs) are novel cancer gene therapies that are moving toward the forefront of modern medicines. However, their full therapeutic potential is hindered by the lack of convenient and reliable strategies to visualize and quantify OV growth kinetics and therapeutic efficacy in live cells. In this study, we present an innovative imaging approach for single-cell real-time analysis of OV replication and efficacy in cancer cells. We selected SG33 as a prototypic new OV that derives from wild-type Myxoma virus (MYXV). Lausanne Toulouse 1 (T1) was used as control. We equipped SG33 and T1 genomes with the ANCHOR system and infected a panel of cell lines. The ANCHOR system is composed of a fusion protein (OR-GFP) that specifically binds to a short nonrepetitive DNA target sequence (ANCH) and spreads onto neighboring sequences by protein oligomerization. Its accumulation on the tagged viral DNA results in the creation of fluorescent foci. We found that (1) SG33 and T1-ANCHOR DNA can be readily detected and quantified by live imaging, (2) both OVs generate perinuclear replication foci after infection clustering into horse-shoe shape replication centers, and (3) SG33 replicates to higher levels as compared with T1. Lastly, as a translational proof of concept, we benchmarked SG33 replication and oncolytic efficacy in primary cancer cells derived from pancreatic adenocarcinoma (PDAC) both at the population and at the single-cell levels. In vivo, SG33 significantly replicates in experimental tumors to inhibit tumor growth. Collectively, we provide herein for the first time a novel strategy to quantify each step of OV infection in live cells and in real time by tracking viral DNA and provide first evidence of theranostic strategies for PDAC patients. Thus, this approach has the potential to rationalize the use of OVs for the benefit of patients with incurable diseases.


Assuntos
Adenocarcinoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Humanos , Vírus Oncolíticos/genética , Replicação Viral
3.
Biomedicines ; 8(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256205

RESUMO

As a live biologic agent, oncolytic vaccinia virus has the ability to target and selectively amplify at tumor sites. We have previously reported that deletion of thymidine kinase and ribonucleotide reductase genes in vaccinia virus can increase the safety and efficacy of the virus. Here, to allow direct visualization of the viral genome in living cells, we incorporated the ANCH target sequence and the OR3-Santaka gene in the double-deleted vaccinia virus. Infection of human tumor cells with ANCHOR3-tagged vaccinia virus enables visualization and quantification of viral genome dynamics in living cells. The results show that the ANCHOR technology permits the measurement of the oncolytic potential of the double deleted vaccinia virus. Quantitative analysis of infection kinetics and of viral DNA replication allow rapid and efficient identification of inhibitors and activators of oncolytic activity. Our results highlight the potential application of the ANCHOR technology to track vaccinia virus and virtually any kind of poxvirus in living cells.

4.
Front Immunol ; 10: 134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809223

RESUMO

The guanabenz derivative Sephin1 has recently been proposed to increase the levels of translation initiation factor 2 (eIF2α) phosphorylation by inhibiting dephosphorylation by the protein phosphatase 1-GADD34 (PPP1R15A) complex. As phosphorylation of eIF2α by protein kinase R (PKR) is a prominent cellular antiviral pathway, we evaluated the consequences of Sephin1 treatment on virus replication. Our results provide evidence that Sephin1 downregulates replication of human respiratory syncytial virus, measles virus, human adenovirus 5 virus, human enterovirus D68, human cytomegalovirus, and rabbit myxoma virus. However, Sephin1 proved to be inactive against influenza virus, as well as against Japanese encephalitis virus. Sephin1 increased the levels of phosphorylated eIF2α in cells exposed to a PKR agonist. By contrast, in virus-infected cells, the levels of phosphorylated eIF2α did not always correlate with the inhibition of virus replication by Sephin1. This work identifies Sephin1 as an antiviral molecule in cell culture against RNA, as well as DNA viruses belonging to phylogenetically distant families.


Assuntos
Antivirais/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Guanabenzo/análogos & derivados , Animais , Antivirais/uso terapêutico , Linhagem Celular , Vírus de DNA/efeitos dos fármacos , Vírus de DNA/fisiologia , Guanabenzo/farmacologia , Guanabenzo/uso terapêutico , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Infecções por Poxviridae/tratamento farmacológico , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/fisiologia , Coelhos , Infecções Tumorais por Vírus/tratamento farmacológico , Replicação Viral/efeitos dos fármacos
5.
Oncotarget ; 9(89): 35891-35906, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30542506

RESUMO

Vaccinia virus, a member of the Poxviridae family, has been extensively used as an oncolytic agent and has entered late stage clinical development. In this study, we evaluated the potential oncolytic properties of other members of the Poxviridae family. Numerous tumor cell lines were infected with ten non-vaccinia poxviruses to identify which virus displayed the most potential as an oncolytic agent. Cell viability indicated that tumor cell lines were differentially susceptible to each virus. Raccoonpox virus was the most potent of the tested poxviruses and was highly effective in controlling cell growth in all tumor cell lines. To investigate further the oncolytic capacity of the Raccoonpox virus, we have generated a thymidine kinase (TK)-deleted recombinant Raccoonpox virus expressing the suicide gene FCU1. This TK-deleted Raccoonpox virus was notably attenuated in normal primary cells but replicated efficiently in numerous tumor cell lines. In human colon cancer xenograft model, a single intratumoral inoculation of the recombinant Raccoonpox virus, in combination with 5-fluorocytosine administration, produced relevant tumor growth control. The results demonstrated significant antitumoral activity of this new modified Raccoonpox virus armed with FCU1 and this virus could be considered to be included into the growing armamentarium of oncolytic virotherapy for cancer.

6.
Mol Ther Oncolytics ; 7: 1-11, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28951885

RESUMO

Oncolytic virus therapy has recently been recognized as a promising new therapeutic approach for cancer treatment. In this study, we are proposing for the first time to evaluate the in vitro and in vivo oncolytic capacities of the Cowpox virus (CPXV). To improve the tumor selectivity and oncolytic activity, we developed a thymidine kinase (TK)-deleted CPXV expressing the suicide gene FCU1, which converts the non-toxic prodrug 5-fluorocytosine (5-FC) into cytotoxic 5-fluorouracil (5-FU) and 5-fluorouridine-5'-monophosphate (5-FUMP). This TK-deleted virus replicated efficiently in human tumor cell lines; however, it was notably attenuated in normal primary cells, thus displaying a good therapeutic index. Furthermore, this new recombinant poxvirus rendered cells sensitive to 5-FC. In vivo, after systemic injection in mice, the TK-deleted variant caused significantly less mortality than the wild-type strain. A biodistribution study demonstrated high tumor selectivity and low accumulation in normal tissues. In human xenograft models of solid tumors, the recombinant CPXV also displayed high replication, inducing relevant tumor growth inhibition. This anti-tumor effect was improved by 5-FC co-administration. These results demonstrated that CPXV is a promising oncolytic vector capable of expressing functional therapeutic transgenes.

7.
PLoS One ; 9(11): e111605, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364822

RESUMO

Bluetongue virus (BTV) is an economically important Orbivirus transmitted by biting midges to domestic and wild ruminants. The need for new vaccines has been highlighted by the occurrence of repeated outbreaks caused by different BTV serotypes since 1998. The major group-reactive antigen of BTV, VP7, is conserved in the 26 serotypes described so far, and its role in the induction of protective immunity has been proposed. Viral-based vectors as antigen delivery systems display considerable promise as veterinary vaccine candidates. In this paper we have evaluated the capacity of the BTV-2 serotype VP7 core protein expressed by either a non-replicative canine adenovirus type 2 (Cav-VP7 R0) or a leporipoxvirus (SG33-VP7), to induce immune responses in sheep. Humoral responses were elicited against VP7 in almost all animals that received the recombinant vectors. Both Cav-VP7 R0 and SG33-VP7 stimulated an antigen-specific CD4+ response and Cav-VP7 R0 stimulated substantial proliferation of antigen-specific CD8+ lymphocytes. Encouraged by the results obtained with the Cav-VP7 R0 vaccine vector, immunized animals were challenged with either the homologous BTV-2 or the heterologous BTV-8 serotype and viral burden in plasma was followed by real-time RT-PCR. The immune responses triggered by Cav-VP7 R0 were insufficient to afford protective immunity against BTV infection, despite partial protection obtained against homologous challenge. This work underscores the need to further characterize the role of BTV proteins in cross-protective immunity.


Assuntos
Antígenos Virais/genética , Vírus Bluetongue/genética , Bluetongue/imunologia , Expressão Gênica , Vetores Genéticos/genética , Proteínas do Core Viral/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Bluetongue/prevenção & controle , Bluetongue/virologia , Vírus Bluetongue/imunologia , Linhagem Celular , Cricetinae , Reações Cruzadas/imunologia , Cães , Feminino , Imunidade Celular , Imunização , Masculino , Coelhos , Ovinos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas do Core Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
8.
Vet Res ; 45: 26, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24589193

RESUMO

The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen.


Assuntos
Imunidade Adaptativa , Imunidade Coletiva , Myxoma virus/fisiologia , Mixomatose Infecciosa/imunologia , Coelhos , Fatores Etários , Animais , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , França/epidemiologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Mixomatose Infecciosa/epidemiologia , Mixomatose Infecciosa/virologia
9.
Vet Res ; 44: 81, 2013 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-24011218

RESUMO

Since summer 2010, numerous cases of Rabbit Haemorrhagic Disease (RHD) have been reported in north-western France both in rabbitries, affecting RHD-vaccinated rabbits, and in wild populations. We demonstrate that the aetiological agent was a lagovirus phylogenetically distinct from other lagoviruses and which presents a unique antigenic profile. Experimental results show that the disease differs from RHD in terms of disease duration, mortality rates, higher occurrence of subacute/chronic forms and that partial cross-protection occurs between RHDV and the new RHDV variant, designated RHDV2. These data support the hypothesis that RHDV2 is a new member of the Lagovirus genus. A molecular epidemiology study detected RHDV2 in France a few months before the first recorded cases and revealed that one year after its discovery it had spread throughout the country and had almost replaced RHDV strains. RHDV2 was detected in continental Italy in June 2011, then four months later in Sardinia.


Assuntos
Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/classificação , Vírus da Doença Hemorrágica de Coelhos/genética , Coelhos , Proteínas Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , França/epidemiologia , Testes de Hemaglutinação/veterinária , Vírus da Doença Hemorrágica de Coelhos/química , Vírus da Doença Hemorrágica de Coelhos/metabolismo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência/veterinária , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo
10.
Vaccine ; 30(9): 1609-16, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22244980

RESUMO

Recombinant poxviruses are well suited for the development of new vaccine vectors. Our previous data supported the idea that Myxomavirus (MYXV) is efficient at priming antibody responses in sheep. To provide definitive evidence on the potential of MYXV for vaccination against infectious diseases in ruminants, we investigated the immune protection provided by recombinant MYXV against bluetongue, a devastating disease in sheep. To test this concept, sheep were injected twice with an MYXV expressing the immunodominant VP2 protein (SG33-VP2). The SG33-VP2 vector promoted the production of neutralising antibodies and partially protected sheep against disease after challenge with a highly virulent strain of serotype-8 bluetongue virus (BTV-8). In contrast, an MYXV expressing both VP2 and VP5 proteins (SG33-VP2/5) elicited very little protection. The expression levels of the VP2 and VP5 proteins suggested that, greater than the co-expression of the VP5 protein which was previously thought to favour anti-VP2 antibody response, the high expression of VP2 may be critical in the MYXV context to stimulate a protective response in sheep. This highlights the requirement for a careful examination of antigen expression before any conclusion can be drawn on the respective role of the protective antigens. As a proof of principle, our study shows that an MYXV vaccine vector is possible in ruminants.


Assuntos
Vírus Bluetongue/patogenicidade , Bluetongue/prevenção & controle , Myxoma virus/imunologia , Carneiro Doméstico/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Bluetongue/imunologia , Proteínas do Capsídeo/imunologia , Masculino , Ovinos/imunologia , Ovinos/virologia , Carneiro Doméstico/virologia
11.
Emerg Infect Dis ; 17(4): 633-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21470452

RESUMO

Myxomatosis in Europe is the result of the release of a South America strain of myxoma virus in 1952. Several attenuated strains with origins in South America or California have since been used as vaccines in the rabbit industry. We sequenced the genome of the SG33 myxoma virus vaccine strain and compared it with those of other myxoma virus strains. We show that SG33 genome carries a large deletion in its right end. Furthermore, our data strongly suggest that the virus isolate from which SG33 is derived results from an in vivo recombination between a wild-type South America (Lausanne) strain and a California MSD-derived strain. These findings raise questions about the use of insufficiently attenuated virus in vaccination.


Assuntos
Genoma Viral , Myxoma virus/genética , Recombinação Genética , Animais , Dados de Sequência Molecular , Mixomatose Infecciosa/prevenção & controle , Mixomatose Infecciosa/virologia , Coelhos , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
12.
Virol J ; 7: 56, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20211013

RESUMO

Myxoma virus (MYXV), a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus). Like all poxviruses, MYXV is known for encoding multiple proteins that regulate cellular signaling pathways. Among them, four proteins share the same ANK/PRANC structure: M148R, M149R, MNF (Myxoma Nuclear factor) and M-T5, all of them described as virulence factors. This family of poxvirus proteins, recently identified, has drawn considerable attention for its potential role in modulating the host ubiquitin-proteasome system during viral infection. To date, many members of this novel protein family have been shown to interact with SCF components, in vitro. Here, we focus on MNF gene, which has been shown to express a nuclear protein presenting nine ANK repeats, one of which has been identified as a nuclear localization signal. In transfection, MNF has been shown to colocalise with the transcription factor NF-kappaB in the nucleus of TNFalpha-stimulated cells. Functionally, MNF is a critical virulence factor since its deletion generates an almost apathogenic virus. In this study, to pursue the investigation of proteins interacting with MNF and of its mechanism of action, we engineered a recombinant MYXV expressing a GFP-linked MNF under the control of MNF native promoter. Infection of rabbits with MYXV-GFPMNF recombinant virus provided the evidence that the GFP fusion does not disturb the main function of MNF. Hence, cells were infected with MYXV-GFPMNF and immunoprecipitation of the GFPMNF fusion protein was performed to identify MNF's partners. For the first time, endogenous components of SCF (Cullin-1 and Skp1) were co-precipitated with an ANK myxoma virus protein, expressed in an infectious context, and without over-expression of any protein.


Assuntos
Repetição de Anquirina , Myxoma virus/fisiologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Infecções por Poxviridae/patologia , Infecções por Poxviridae/veterinária , Ligação Proteica , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/veterinária , Proteínas Virais/genética , Fatores de Virulência/genética
13.
Vet Res ; 40(1): 11, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19019281

RESUMO

Myxoma virus (MYXV), a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus). MYXV has a linear double-stranded DNA genome that encodes several factors important for evasion from the host immune system. Among them, four ankyrin (ANK) repeat proteins were identified: M148R, M149R, M150R and M-T5. To date, only M150R and M-T5 were studied and characterized as critical virulence factors. This article presents the first characterization of M148R and M149R. Green Fluorescent Protein (GFP) fusions allowed us to localize them in a viral context. Whereas M149R is only cytoplasmic, interestingly, M148R is in part located in the nucleolus, a unique feature for an ANK repeat poxviral protein. In order to evaluate their implication in viral pathogenicity, targeted M148R, M149R, or both deletions were constructed in the wild type T1 strain of myxoma virus. In vitro infection of rabbit and primate cultured cells as well as primary rabbit cells allowed us to conclude that M148R and M149R are not likely to be implicated in cell tropism or host range functions. However, in vivo experiments revealed that they are virulence factors since after infection of European rabbits with mutant viruses, a delay in the onset of clinical signs, an increase of survival time and a dramatic decrease in mortality rate were observed. Moreover, histological analysis suggests that M148R plays a role in the subversion of host inflammatory response by MYXV.


Assuntos
Myxoma virus/patogenicidade , Mixomatose Infecciosa/virologia , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Repetição de Anquirina , Linhagem Celular , Proteínas F-Box , Regulação Viral da Expressão Gênica/fisiologia , Masculino , Coelhos , Carga Viral , Proteínas Virais/química , Proteínas Virais/genética , Fatores de Virulência/química , Fatores de Virulência/genética , Replicação Viral
14.
J Gen Virol ; 89(Pt 6): 1371-1379, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18474552

RESUMO

Myxoma virus (MYXV), a leporide-specific poxvirus, represents an attractive candidate for the generation of safe and non-replicative vaccine vectors for other species. With the aim of developing new recombinant vaccines for ruminants, we evaluated the safety and the immunogenicity of recombinant MYXV in sheep. In vitro studies indicated that ovine primary fibroblasts were not permissive for MYXV and that infection of ovine peripheral blood mononuclear cells occurred at a low rate. Although non-specific activation significantly improved the susceptibility of lymphocytes, MYXV infection remained abortive. Histological and immunohistochemical examination at the inoculation sites revealed the development of an inflammatory process and allowed the detection of sparse infected cells in the dermis. In addition, inoculated sheep developed an antibody response directed against MYXV and the product of the transgene. Overall, these results provide the first line of evidence on the potential of MYXV as a viral vector for ruminants.


Assuntos
Vetores Genéticos/fisiologia , Myxoma virus/fisiologia , Vacinação/métodos , Vacinas Virais , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Células Cultivadas , Fibroblastos/virologia , Vetores Genéticos/administração & dosagem , Vírus da Doença Hemorrágica de Coelhos/imunologia , Injeções Intradérmicas , Leucócitos Mononucleares/virologia , Myxoma virus/patogenicidade , Coelhos , Vírus Reordenados/fisiologia , Ovinos , Pele/virologia , Especificidade da Espécie , Vacinação/veterinária , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Virulência , Replicação Viral
15.
Virol J ; 4: 94, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17900332

RESUMO

Myxoma virus (MYXV), a leporide-specific poxvirus, represents an attractive candidate for the generation of safe, non-replicative vaccine vector for non-host species. However, there is very little information concerning infection of non-laboratory animals species cells with MYXV. In this study, we investigated interactions between bovine cells and respectively a wild type strain (T1) and a vaccinal strain (SG33) of MYXV. We showed that bovine KOP-R, BT and MDBK cell lines do not support MYXV production. Electron microscopy observations of BT-infected cells revealed the low efficiency of viral entry and the production of defective virions. In addition, infection of bovine peripheral blood mononuclear cells (PBMC) occurred at a very low level, even following non-specific activation, and was always abortive. We did not observe significant differences between the wild type strain and the vaccinal strain of MYXV, indicating that SG33 could be used for new bovine vaccination strategies.


Assuntos
Leucócitos Mononucleares/virologia , Myxoma virus/fisiologia , Animais , Bovinos , Linhagem Celular , Microscopia Eletrônica de Transmissão , Coelhos , Internalização do Vírus
16.
J Virol ; 76(6): 2912-23, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11861858

RESUMO

Down-modulation of major histocompatibility class I (MHC-I) molecules is a viral strategy for survival in the host. Myxoma virus, a member of the Poxviridae family responsible for rabbit myxomatosis, can down-modulate the expression of MHC-I molecules, but the viral factor(s) has not been described. We cloned and characterized a gene coding for an endoplasmic reticulum (ER)-resident protein containing an atypical zinc finger and two transmembrane domains, which we called myxoma virus leukemia-associated protein (MV-LAP). MV-LAP down-regulated surface MHC-I and Fas-CD95 molecules upon transfection; the mechanism probably involves an exacerbation of endocytosis and was lost when the ER retention signal was removed. In addition, the lytic activity of MHC-I-restricted antigen-specific cytolytic T lymphocytes (CTL) against myxoma virus-infected antigen-presenting target cells was significantly reduced, revealing a strong correlation between MHC-I down-regulation by MV-LAP and CTL killing in vitro. In vivo experiments with a knockout virus showed that MV-LAP is a virulence factor, potentially involved in the immunosuppression characteristic of myxomatosis. Data bank analysis revealed that MV-LAP has homologs in herpesviruses and other poxviruses. We propose the name "scrapins" to define a new group of ER-resident surface cellular receptor abductor proteins. The down-regulation of cell surface molecules by scrapins probably helps protect infected cells during viral infections.


Assuntos
Regulação para Baixo/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas de Membrana/metabolismo , Myxoma virus/patogenicidade , Mixomatose Infecciosa/imunologia , Proteínas Virais/metabolismo , Receptor fas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Myxoma virus/imunologia , Myxoma virus/fisiologia , Mixomatose Infecciosa/fisiopatologia , Mixomatose Infecciosa/virologia , Coelhos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Análise de Sequência de DNA , Linfócitos T Citotóxicos/imunologia , Proteínas Virais/genética , Virulência
17.
J Gen Virol ; 82(Pt 6): 1407-1417, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11369885

RESUMO

Myxoma virus (MV), a member of the family Poxviridae, is the causative agent of myxomatosis, a fatal disease of the European rabbit. The MV genome is a linear, double-stranded DNA molecule that encodes several factors important for evasion of the host immune system. Sequencing the right-end region of the MV genome identified an 801 bp open reading frame (ORF) encoding a polypeptide that belongs to the serpin superfamily. To date, two MV-encoded serpins have been characterized: SERP-1 binds to several targets and is an anti-inflammatory molecule, whereas Serp2 is essential for virus virulence and has both anti-inflammatory and anti-apoptotic effects. Thus, Serp3 is the third MV-encoded serpin. DNA sequence analysis of Serp3 indicated a similarity to poxvirus late promoters, which was confirmed by mRNA expression analysis. Serp3 has an atypical serpin motif and has significant sequence deletions as compared to most cellular and viral serpins. However, molecular modelling studies suggested that Serp3 can retain the overall serpin fold. Insertional inactivation of the serp3 ORF led to a significant attenuation of virulence in vivo (as measured by the increase in survival of infected rabbits) and limited dissemination of the virus to secondary sites of infection. In rabbits infected with a Serp3 deletion mutant (MV-Serp3(-)), the main histopathological feature is the absence of secondary myxomas. Both wild-type MV and MV-Serp3(-) replicate at comparable levels in vivo. Serp3 may represent a significant virulence factor of MV and probably acts in synergy with other viral proteins.


Assuntos
Myxoma virus/patogenicidade , Serpinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Apoptose , Linhagem Celular , Deleção de Genes , Linfonodos/imunologia , Linfonodos/patologia , Linfonodos/virologia , Modelos Moleculares , Dados de Sequência Molecular , Myxoma virus/genética , Myxoma virus/crescimento & desenvolvimento , Myxoma virus/metabolismo , Mixomatose Infecciosa/patologia , Mixomatose Infecciosa/virologia , Fases de Leitura Aberta/genética , Glândula Parótida/imunologia , Glândula Parótida/patologia , Glândula Parótida/virologia , Regiões Promotoras Genéticas/genética , Conformação Proteica , RNA Viral/análise , RNA Viral/genética , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serpinas/química , Serpinas/genética , Taxa de Sobrevida , Carga Viral , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência/genética , alfa 1-Antitripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA