Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biofactors ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994725

RESUMO

Although the epidermal growth factor receptor 2 (ErbB2) and Notch1 signaling pathways have both significant roles in regulating cardiac biology, their interplay in the heart remains poorly investigated. Here, we present evidence of a crosstalk between ErbB2 and Notch1 in cardiac cells, with effects on autophagy and proliferation. Overexpression of ErbB2 in H9c2 cardiomyoblasts induced Notch1 activation in a post-transcriptional, p38-dependent manner, while ErbB2 inhibition with the specific inhibitor, lapatinib, reduced Notch1 activation. Moreover, incubation of H9c2 cells with lapatinib resulted in stalled autophagic flux and decreased proliferation, consistent with the established cardiotoxicity of this and other ErbB2-targeting drugs. Confirming the findings in H9c2 cells, exposure of primary neonatal mouse cardiomyocytes to exogenous neuregulin-1, which engages ErbB2, stimulated proliferation, and this effect was abrogated by concomitant inhibition of the enzyme responsible for Notch1 activation. Furthermore, the hearts of transgenic mice specifically overexpressing ErbB2 in cardiomyocytes had increased levels of active Notch1 and of Notch-related genes. These data expand the knowledge of ErbB2 and Notch1 functions in the heart and may allow better understanding the mechanisms of the cardiotoxicity of ErbB2-targeting cancer treatments.

3.
Basic Res Cardiol ; 119(4): 569-585, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38890208

RESUMO

Mitochondrial calcium (Ca2+) signals play a central role in cardiac homeostasis and disease. In the healthy heart, mitochondrial Ca2+ levels modulate the rate of oxidative metabolism to match the rate of adenosine triphosphate consumption in the cytosol. During ischemia/reperfusion (I/R) injury, pathologically high levels of Ca2+ in the mitochondrial matrix trigger the opening of the mitochondrial permeability transition pore, which releases solutes and small proteins from the matrix, causing mitochondrial swelling and ultimately leading to cell death. Pharmacological and genetic approaches to tune mitochondrial Ca2+ handling by regulating the activity of the main Ca2+ influx and efflux pathways, i.e., the mitochondrial Ca2+ uniporter and sodium/Ca2+ exchanger, represent promising therapeutic strategies to protect the heart from I/R injury.


Assuntos
Cálcio , Mitocôndrias Cardíacas , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Humanos , Animais , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Cardiotônicos/metabolismo
4.
Eur J Prev Cardiol ; 31(11): 1400-1407, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38429011

RESUMO

AIMS: To investigate the relationship between chronic low-grade inflammation, as measured by high-sensitivity C-reactive protein (hsCRP) levels, and incident heart failure (HF) or cancer. METHODS AND RESULTS: We assessed the relationship between baseline hsCRP concentrations and subsequent HF or cancer in two community-based cohorts, the Trøndelag Health Study (HUNT3) and the Health, Aging and Body Composition (ABC) study. In the latter, the analysis was replicated with interleukin (IL)-1, IL-6, or tumour necrosis factor (TNF)-α instead of hsCRP. In HUNT3, hsCRP was measured in 47 163 subjects (mean age 52.3 ± 15.8 years). During a median follow-up of 12.1 years, 2034 (4.3%) individuals developed HF and 5024 (10.7%) cancer, with 442 (0.9%) being diagnosed with both. After adjusting for age, male sex, diabetes, obesity, previous or current smoking, and comorbidities, elevated baseline hsCRP was associated with a higher risk of HF or cancer [hazard ratio (HR) 1.09; 95% confidence interval (CI), 1.07-1.10]. In the Health ABC study, hsCRP levels were assessed in 2803 participants, who had a mean age of 72.6 ± 2.9 years and a higher burden of comorbidities than in HUNT3. During a median follow-up of 8.2 years, HF and cancer were diagnosed in 346 (12.3%) and 776 (27.7%) subjects, respectively, with 77 (2.7%) having both conditions. After adjusting for the same variables used for the HUNT3 cohort, hsCRP remained significantly associated with incident HF or cancer (HR 1.11; 95% CI, 1.05-1.18), as were IL-1 (HR 1.15; 1.07-1.24), IL-6 (HR 1.09; 1.02-1.17), and TNF-α (HR 1.15; 1.07-1.24). CONCLUSION: A state of chronic, low-grade inflammation captured by an increase in hsCRP levels is associated with an increased risk of developing HF or cancer, with potential implications for clinical trials with anti-inflammatory therapies.


There is an increasing recognition that cardiovascular (CV) risk factors portend an increased risk of both heart failure (HF) and cancer. Chronic, low-grade inflammation might represent a shared pathogenic pathway underlying the association between these risk factors, HF, and malignancy. The biomarker high-sensitivity C-reactive protein (hsCRP) might add prognostic information on CV and cancer risk by capturing this inflammatory state. In this study, we analysed the association of inflammation, as assessed by baseline measurement of hsCRP, and the risk of developing HF and cancer in two community-based prospective studies, the Trøndelag Health Study (HUNT3) and the Health, Aging and Body Composition (Health ABC) study.In these cohorts, comprising more than 50 000 individuals, inflammation at baseline was associated with an increased risk of incident HF or cancer during a median follow-up of 8­12 years, after adjusting for traditional risk factors and comorbidities.In the Health ABC study sample, three inflammatory markers other than hsCRP, namely interleukin (IL)-1, IL-6, or tumour necrosis factor α, performed similarly to hsCRP in predicting the risk of incident HF or cancer. These results provide insights into the interconnection between HF and cancer and reinforce the concept that low-grade, chronic inflammation promotes the development of both HF and cancer and, thereby, might be targeted for prevention of either condition. Furthermore, our findings confirm the reliability of hsCRP as a biomarker to select individuals who may benefit from anti-inflammatory treatments to reduce CV and cancer events.


Assuntos
Biomarcadores , Proteína C-Reativa , Insuficiência Cardíaca , Mediadores da Inflamação , Inflamação , Neoplasias , Humanos , Masculino , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico , Pessoa de Meia-Idade , Feminino , Proteína C-Reativa/análise , Incidência , Neoplasias/epidemiologia , Neoplasias/sangue , Noruega/epidemiologia , Biomarcadores/sangue , Inflamação/sangue , Inflamação/epidemiologia , Fatores de Risco , Idoso , Mediadores da Inflamação/sangue , Medição de Risco , Adulto , Estudos Prospectivos , Fatores de Tempo
5.
Eur Heart J ; 45(14): 1209-1223, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323638

RESUMO

Cardiologists are encountering a growing number of cancer patients with ischaemic heart disease (IHD). Several factors account for the interrelationship between these two conditions, in addition to improving survival rates in the cancer population. Established cardiovascular (CV) risk factors, such as hypercholesterolaemia and obesity, predispose to both IHD and cancer, through specific mechanisms and via low-grade, systemic inflammation. This latter is also fuelled by clonal haematopoiesis of indeterminate potential. Furthermore, experimental work indicates that IHD and cancer can promote one another, and the CV or metabolic toxicity of anticancer therapies can lead to IHD. The connections between IHD and cancer are reinforced by social determinants of health, non-medical factors that modify health outcomes and comprise individual and societal domains, including economic stability, educational and healthcare access and quality, neighbourhood and built environment, and social and community context. Management of IHD in cancer patients is often challenging, due to atypical presentation, increased bleeding and ischaemic risk, and worse outcomes as compared to patients without cancer. The decision to proceed with coronary revascularization and the choice of antithrombotic therapy can be difficult, particularly in patients with chronic coronary syndromes, necessitating multidisciplinary discussion that considers both general guidelines and specific features on a case by case basis. Randomized controlled trial evidence in cancer patients is very limited and there is urgent need for more data to inform clinical practice. Therefore, coexistence of IHD and cancer raises important scientific and practical questions that call for collaborative efforts from the cardio-oncology, cardiology, and oncology communities.


Assuntos
Doença da Artéria Coronariana , Hiperlipidemias , Isquemia Miocárdica , Neoplasias , Humanos , Isquemia Miocárdica/etiologia , Doença da Artéria Coronariana/complicações , Obesidade/complicações , Hiperlipidemias/complicações , Neoplasias/complicações , Neoplasias/epidemiologia , Fatores de Risco
6.
Basic Res Cardiol ; 118(1): 47, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930434

RESUMO

Barth Syndrome (BTHS) is an inherited cardiomyopathy caused by defects in the mitochondrial transacylase TAFAZZIN (Taz), required for the synthesis of the phospholipid cardiolipin. BTHS is characterized by heart failure, increased propensity for arrhythmias and a blunted inotropic reserve. Defects in Ca2+-induced Krebs cycle activation contribute to these functional defects, but despite oxidation of pyridine nucleotides, no oxidative stress developed in the heart. Here, we investigated how retrograde signaling pathways orchestrate metabolic rewiring to compensate for mitochondrial defects. In mice with an inducible knockdown (KD) of TAFAZZIN, and in induced pluripotent stem cell-derived cardiac myocytes, mitochondrial uptake and oxidation of fatty acids was strongly decreased, while glucose uptake was increased. Unbiased transcriptomic analyses revealed that the activation of the eIF2α/ATF4 axis of the integrated stress response upregulates one-carbon metabolism, which diverts glycolytic intermediates towards the biosynthesis of serine and fuels the biosynthesis of glutathione. In addition, strong upregulation of the glutamate/cystine antiporter xCT increases cardiac cystine import required for glutathione synthesis. Increased glutamate uptake facilitates anaplerotic replenishment of the Krebs cycle, sustaining energy production and antioxidative pathways. These data indicate that ATF4-driven rewiring of metabolism compensates for defects in mitochondrial uptake of fatty acids to sustain energy production and antioxidation.


Assuntos
Síndrome de Barth , Animais , Camundongos , Síndrome de Barth/genética , Cistina , Antioxidantes , Ácidos Graxos , Glutamatos , Glutationa
7.
Redox Biol ; 67: 102894, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37839355

RESUMO

The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Espécies Reativas de Oxigênio/metabolismo , Miocárdio/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Oxirredução
10.
Front Mol Med ; 3: 1235188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39086688

RESUMO

The energy demand of cardiomyocytes changes continuously in response to variations in cardiac workload. Cardiac excitation-contraction coupling is fueled primarily by adenosine triphosphate (ATP) production by oxidative phosphorylation in mitochondria. The rate of mitochondrial oxidative metabolism is matched to the rate of ATP consumption in the cytosol by the parallel activation of oxidative phosphorylation by calcium (Ca2+) and adenosine diphosphate (ADP). During cardiac workload transitions, Ca2+ accumulates in the mitochondrial matrix, where it stimulates the activity of the tricarboxylic acid cycle. In this review, we describe how mitochondria internalize and extrude Ca2+, the relevance of this process for ATP production and redox homeostasis in the healthy heart, and how derangements in ion handling cause mitochondrial and cardiomyocyte dysfunction in heart failure.

12.
JACC CardioOncol ; 4(1): 98-109, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35492831

RESUMO

Background: Studies assessing whether heart failure (HF) is associated with cancer and cancer-related mortality have yielded conflicting results. Objectives: This study assessed cancer incidence and mortality according to pre-existing HF in a community-based cohort. Methods: Among individuals ≥50 years of age from the Puglia region in Italy with administrative health data from 2002 to 2018, no cancer within 3 years before the baseline evaluation, and ≥5-year follow-up, the study matched 104,020 subjects with HF at baseline with 104,020 control subjects according to age, sex, drug-derived complexity index, Charlson comorbidity index, and follow-up duration. Cancer incidence and mortality were defined based on International Classification of Diseases-Ninth Revision codes in hospitalization records or death certificates. Results: The incidence rate of cancer in HF patients and control subjects was 21.36 (95% CI: 20.98-21.74) and 12.42 (95% CI: 12.14-12.72) per 1000 person-years, respectively, with the HR being 1.76 (95% CI: 1.71-1.81). Cancer mortality was also higher in HF patients than control subjects (HR: 4.11; 95% CI: 3.86-4.38), especially in those <70 years of age (HR: 7.54; 95% CI: 6.33-8.98 vs HR: 3.80; 95% CI: 3.44-4.19 for 70-79 years of age; and HR: 3.10; 95% CI: 2.81-3.43 for ≥80 years of age). The association between HF and cancer mortality was confirmed in a competing risk analysis (subdistribution HR: 3.48; 95% CI: 3.27-3.72). The HF-related excess risk applied to the majority of cancer types. Among HF patients, prescription of high-dose loop diuretic was associated with higher cancer incidence (HR: 1.11; 95% CI: 1.03-1.21) and mortality (HR: 1.35; 95% CI: 1.19-1.53). Conclusions: HF is associated with an increased risk of cancer and cancer-related mortality, which may be heightened in decompensated states.

14.
Curr Heart Fail Rep ; 19(2): 27-37, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35147851

RESUMO

PURPOSE OF REVIEW: We review therapeutic approaches aimed at restoring function of the failing heart by targeting mitochondrial reactive oxygen species (ROS), ion handling, and substrate utilization for adenosine triphosphate (ATP) production. RECENT FINDINGS: Mitochondria-targeted therapies have been tested in animal models of and humans with heart failure (HF). Cardiac benefits of sodium/glucose cotransporter 2 inhibitors might be partly explained by their effects on ion handling and metabolism of cardiac myocytes. The large energy requirements of the heart are met by oxidative phosphorylation in mitochondria, which is tightly regulated by the turnover of ATP that fuels cardiac contraction and relaxation. In heart failure (HF), this mechano-energetic coupling is disrupted, leading to bioenergetic mismatch and production of ROS that drive the progression of cardiac dysfunction. Furthermore, HF is accompanied by changes in substrate uptake and oxidation that are considered detrimental for mitochondrial oxidative metabolism and negatively affect cardiac efficiency. Mitochondria lie at the crossroads of metabolic and energetic dysfunction in HF and represent ideal therapeutic targets.


Assuntos
Insuficiência Cardíaca , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Metabolismo Energético , Humanos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
15.
Circulation ; 144(21): 1694-1713, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34648376

RESUMO

BACKGROUND: Barth syndrome (BTHS) is caused by mutations of the gene encoding tafazzin, which catalyzes maturation of mitochondrial cardiolipin and often manifests with systolic dysfunction during early infancy. Beyond the first months of life, BTHS cardiomyopathy typically transitions to a phenotype of diastolic dysfunction with preserved ejection fraction, blunted contractile reserve during exercise, and arrhythmic vulnerability. Previous studies traced BTHS cardiomyopathy to mitochondrial formation of reactive oxygen species (ROS). Because mitochondrial function and ROS formation are regulated by excitation-contraction coupling, integrated analysis of mechano-energetic coupling is required to delineate the pathomechanisms of BTHS cardiomyopathy. METHODS: We analyzed cardiac function and structure in a mouse model with global knockdown of tafazzin (Taz-KD) compared with wild-type littermates. Respiratory chain assembly and function, ROS emission, and Ca2+ uptake were determined in isolated mitochondria. Excitation-contraction coupling was integrated with mitochondrial redox state, ROS, and Ca2+ uptake in isolated, unloaded or preloaded cardiac myocytes, and cardiac hemodynamics analyzed in vivo. RESULTS: Taz-KD mice develop heart failure with preserved ejection fraction (>50%) and age-dependent progression of diastolic dysfunction in the absence of fibrosis. Increased myofilament Ca2+ affinity and slowed cross-bridge cycling caused diastolic dysfunction, in part, compensated by accelerated diastolic Ca2+ decay through preactivated sarcoplasmic reticulum Ca2+-ATPase. Taz deficiency provoked heart-specific loss of mitochondrial Ca2+ uniporter protein that prevented Ca2+-induced activation of the Krebs cycle during ß-adrenergic stimulation, oxidizing pyridine nucleotides and triggering arrhythmias in cardiac myocytes. In vivo, Taz-KD mice displayed prolonged QRS duration as a substrate for arrhythmias, and a lack of inotropic response to ß-adrenergic stimulation. Cellular arrhythmias and QRS prolongation, but not the defective inotropic reserve, were restored by inhibiting Ca2+ export through the mitochondrial Na+/Ca2+ exchanger. All alterations occurred in the absence of excess mitochondrial ROS in vitro or in vivo. CONCLUSIONS: Downregulation of mitochondrial Ca2+ uniporter, increased myofilament Ca2+ affinity, and preactivated sarcoplasmic reticulum Ca2+-ATPase provoke mechano-energetic uncoupling that explains diastolic dysfunction and the lack of inotropic reserve in BTHS cardiomyopathy. Furthermore, defective mitochondrial Ca2+ uptake provides a trigger and a substrate for ventricular arrhythmias. These insights can guide the ongoing search for a cure of this orphaned disease.


Assuntos
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Síndrome de Barth/complicações , Síndrome de Barth/genética , Canais de Cálcio/deficiência , Contração Miocárdica/genética , Trifosfato de Adenosina/biossíntese , Animais , Síndrome de Barth/metabolismo , Biomarcadores , Encéfalo/metabolismo , Cálcio/metabolismo , Diástole , Modelos Animais de Doenças , Suscetibilidade a Doenças , Acoplamento Excitação-Contração/genética , Testes de Função Cardíaca , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , NADP/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Volume Sistólico , Sístole
16.
Eur J Heart Fail ; 22(12): 2272-2289, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33094495

RESUMO

The co-occurrence of cancer and heart failure (HF) represents a significant clinical drawback as each disease interferes with the treatment of the other. In addition to shared risk factors, a growing body of experimental and clinical evidence reveals numerous commonalities in the biology underlying both pathologies. Inflammation emerges as a common hallmark for both diseases as it contributes to the initiation and progression of both HF and cancer. Under stress, malignant and cardiac cells change their metabolic preferences to survive, which makes these metabolic derangements a great basis to develop intersection strategies and therapies to combat both diseases. Furthermore, genetic predisposition and clonal haematopoiesis are common drivers for both conditions and they hold great clinical relevance in the context of personalized medicine. Additionally, altered angiogenesis is a common hallmark for failing hearts and tumours and represents a promising substrate to target in both diseases. Cardiac cells and malignant cells interact with their surrounding environment called stroma. This interaction mediates the progression of the two pathologies and understanding the structure and function of each stromal component may pave the way for innovative therapeutic strategies and improved outcomes in patients. The interdisciplinary collaboration between cardiologists and oncologists is essential to establish unified guidelines. To this aim, pre-clinical models that mimic the human situation, where both pathologies coexist, are needed to understand all the aspects of the bidirectional relationship between cancer and HF. Finally, adequately powered clinical studies, including patients from all ages, and men and women, with proper adjudication of both cancer and cardiovascular endpoints, are essential to accurately study these two pathologies at the same time.


Assuntos
Insuficiência Cardíaca , Inflamação/fisiopatologia , Neoplasias , Comorbidade , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/fisiopatologia , Neoplasias/terapia , Fatores de Risco
17.
J Am Heart Assoc ; 9(18): e016309, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32862764

RESUMO

Background The burden of cancer in heart failure with reduced ejection fraction is apparently growing. Randomized controlled trials (RCTs) may help understanding this observation, since they span decades of heart failure treatment. Methods and Results We assessed cancer, cardiovascular, and total mortality in phase 3 heart failure RCTs involving ≥90% individuals with left ventricular ejection fraction <45%, who were not acutely decompensated and did not represent specific patient subsets. The pooled odds ratios (ORs) of each type of death for the control and treatment arms were calculated using a random-effects model. Temporal trends and the impact of patient and RCT characteristics on mortality outcomes were evaluated by meta-regression analysis. Cancer mortality was reported for 15 (25%) of 61 RCTs, including 33 709 subjects, and accounted for 6% to 14% of all deaths and 17% to 67% of noncardiovascular deaths. Cancer mortality rate was 0.58 (95% CI, 0.46-0.71) per 100 patient-years without temporal trend (P=0.35). Cardiovascular (P=0.001) and total (P=0.001) mortality rates instead decreased over time. Moreover, cancer mortality was not influenced by treatment (OR, 1.08; 95% CI, 0.92-1.28), unlike cardiovascular (OR, 0.88; 95% CI, 0.79-0.98) and all-cause (OR, 0.91; 95% CI, 0.84-0.99) mortality. Meta-regression did not reveal significant sources of heterogeneity. Possible reasons for excluding patients with malignancy overlapped among RCTs with and without published cancer mortality, and malignancy was an exclusion criterion only for 4 (8.7%) of the RCTs not reporting cancer mortality. Conclusions Cancer is a major, yet overlooked cause of noncardiovascular death in heart failure with reduced ejection fraction, which has become more prominent with cardiovascular mortality decline.


Assuntos
Insuficiência Cardíaca/complicações , Neoplasias/complicações , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Humanos , Neoplasias/mortalidade , Volume Sistólico
18.
Card Fail Rev ; 5(2): 106-111, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31179021

RESUMO

The main focus of cardio-oncology has been the prevention and treatment of the cardiac toxicity of chemotherapy and radiotherapy. Furthermore, several targeted therapies have been associated with unexpected cardiotoxic side-effects. Recently, epidemiological studies reported a higher incidence of cancer in patients with heart failure (HF) compared with individuals without HF. On this basis, it has been proposed that HF might represent an oncogenic condition. This hypothesis is supported by preclinical studies demonstrating that hyperactivation of the sympathetic nervous system and renin-angiotensin-aldosterone system, which is a hallmark of HF, promotes cancer growth and dissemination. Another intriguing possibility is that the co-occurrence of HF and cancer is promoted by a common pathological milieu characterised by a state of chronic low-grade inflammation, which predisposes to both diseases. In this review, we provide an overview of the mechanisms underlying the bidirectional relationship between HF and cancer.

20.
FEBS Lett ; 593(13): 1616-1626, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209876

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common form of hereditary cardiomyopathy and is mainly caused by mutations of genes encoding cardiac sarcomeric proteins. HCM is characterized by hypertrophy of the left ventricle, frequently involving the septum, that is not explained solely by loading conditions. HCM has a heterogeneous clinical profile, but diastolic dysfunction and ventricular arrhythmias represent two dominant features of the disease. Preclinical evidence indicates that the enhanced Calcium (Ca2+ ) sensitivity of the myofilaments plays a key role in the pathophysiology of HCM. Notably, this is not always a direct consequence of sarcomeric mutations, but can also result from secondary mutation-driven alterations. Here, we review experimental and clinical evidence indicating that increased myofilament Ca2+ sensitivity lies upstream of numerous cellular derangements which potentially contribute to the progression of HCM toward heart failure and sudden cardiac death.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Metabolismo Energético , Difosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Hipertrófica/patologia , Humanos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA