Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(623): eabi7964, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878823

RESUMO

Endoreplication, duplication of the nuclear genome without cell division, occurs in disease to drive morphologic growth, cell fate, and function. Despite its criticality, the metabolic underpinnings of disease-induced endoreplication and its link to morphologic growth are unknown. Heart disease is characterized by endoreplication preceding cardiac hypertrophy. We identify ATP synthase as a central control node and determinant of cardiac endoreplication and hypertrophy by rechanneling free mitochondrial ADP to methylenetetrahydrofolate dehydrogenase 1 L (MTHFD1L), a mitochondrial localized rate-limiting enzyme of formate and de novo nucleotide biosynthesis. Concomitant activation of the adenosine monophosphate­activated protein kinase (AMPK)­retinoblastoma protein (Rb)-E2F axis co-opts metabolic products of MTHFD1L function to support DNA endoreplication and pathologic growth. Gain- and loss-of-function studies in genetic and surgical mouse heart disease models and correlation in individuals confirm direct coupling of deregulated energetics with endoreplication and pathologic overgrowth. Together, we identify cardiometabolic endoreplication as a hitherto unknown mechanism dictating pathologic growth progression in the failing myocardium.


Assuntos
Endorreduplicação , Cardiopatias , Animais , Ciclo Celular , Divisão Celular , Replicação do DNA , Camundongos
2.
Circulation ; 139(24): 2778-2792, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30922078

RESUMO

BACKGROUND: Enhancers are genomic regulatory elements conferring spatiotemporal and signal-dependent control of gene expression. Recent evidence suggests that enhancers can generate noncoding enhancer RNAs, but their (patho)biological functions remain largely elusive. METHODS: We performed chromatin immunoprecipitation-coupled sequencing of histone marks combined with RNA sequencing of left ventricular biopsies from experimental and genetic mouse models of human cardiac hypertrophy to identify transcripts revealing enhancer localization, conservation with the human genome, and hypoxia-inducible factor 1α dependence. The most promising candidate, hypoxia-inducible enhancer RNA ( HERNA)1, was further examined by investigating its capacity to modulate neighboring coding gene expression by binding to their gene promoters by using chromatin isolation by RNA purification and λN-BoxB tethering-based reporter assays. The role of HERNA1 and its neighboring genes for pathological stress-induced growth and contractile dysfunction, and the therapeutic potential of HERNA1 inhibition was studied in gapmer-mediated loss-of-function studies in vitro using human induced pluripotent stem cell-derived cardiomyocytes and various in vivo models of human pathological cardiac hypertrophy. RESULTS: HERNA1 is robustly induced on pathological stress. Production of HERNA1 is initiated by direct hypoxia-inducible factor 1α binding to a hypoxia-response element in the histoneH3-lysine27acetylation marks-enriched promoter of the enhancer and confers hypoxia responsiveness to nearby genes including synaptotagmin XVII, a member of the family of membrane-trafficking and Ca2+-sensing proteins and SMG1, encoding a phosphatidylinositol 3-kinase-related kinase. Consequently, a substrate of SMG1, ATP-dependent RNA helicase upframeshift 1, is hyperphoshorylated in a HERNA1- and SMG1-dependent manner. In vitro and in vivo inactivation of SMG1 and SYT17 revealed overlapping and distinct roles in modulating cardiac hypertrophy. Finally, in vivo administration of antisense oligonucleotides targeting HERNA1 protected mice from stress-induced pathological hypertrophy. The inhibition of HERNA1 postdisease development reversed left ventricular growth and dysfunction, resulting in increased overall survival. CONCLUSIONS: HERNA1 is a novel heart-specific noncoding RNA with key regulatory functions in modulating the growth, metabolic, and contractile gene program in disease, and reveals a molecular target amenable to therapeutic exploitation.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/prevenção & controle , Cardiomiopatia Hipertrófica/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , RNA não Traduzido/metabolismo , Animais , Sítios de Ligação , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
3.
Cardiovasc Res ; 109(1): 103-14, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26598511

RESUMO

AIMS: Mammalian target of rapamycin (mTOR), a central regulator of growth and metabolism, has tissue-specific functions depending on whether it is part of mTOR complex 1 (mTORC1) or mTORC2. We have previously shown that mTORC1 is required for adaptive cardiac hypertrophy and maintenance of function under basal and pressure-overload conditions. In the present study, we aimed to identify functions of mTORC2 in the heart. METHODS AND RESULTS: Using tamoxifen-inducible cardiomyocyte-specific gene deletion, we generated mice deficient for cardiac rapamycin-insensitive companion of mTOR (rictor), an essential and specific component of mTORC2. Under basal conditions, rictor deficiency did not affect cardiac growth and function in young mice and also had no effects in adult mice. However, transverse aortic constriction caused dysfunction in the rictor-deficient hearts, whereas function was maintained in controls after 1 week of pressure overload. Adaptive increases in cardiac weight and cardiomyocyte cross-sectional area, fibrosis, and hypertrophic and metabolic gene expression were not different between the rictor-deficient and control mice. In control mice, maintained function was associated with increased protein levels of rictor, protein kinase C (PKC)ßII, and PKCδ, whereas rictor ablation abolished these increases. Rictor deletion also significantly decreased PKCε at baseline and after pressure overload. Our data suggest that reduced PKCε and the inability to increase PKCßII and PKCδ abundance are, in accordance with their known function, responsible for decreased contractile performance of the rictor-deficient hearts. CONCLUSION: Our study demonstrates that mTORC2 is implicated in maintaining contractile function of the pressure-overloaded male mouse heart.


Assuntos
Cardiomegalia/fisiopatologia , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Função Ventricular/fisiologia , Animais , Apoptose , Proteínas de Transporte/fisiologia , Fibrose , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Fosfoproteínas/fisiologia , Fosforilação , Proteína Quinase C/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais
4.
Cardiovasc Res ; 108(1): 74-86, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26249804

RESUMO

AIMS: Notch1 signalling in the heart is mainly activated via expression of Jagged1 on the surface of cardiomyocytes. Notch controls cardiomyocyte proliferation and differentiation in the developing heart and regulates cardiac remodelling in the stressed adult heart. Besides canonical Notch receptor activation in signal-receiving cells, Notch ligands can also activate Notch receptor-independent responses in signal-sending cells via release of their intracellular domain. We evaluated therefore the importance of Jagged1 (J1) intracellular domain (ICD)-mediated pathways in the postnatal heart. METHODS AND RESULTS: In cardiomyocytes, Jagged1 releases J1ICD, which then translocates into the nucleus and down-regulates Notch transcriptional activity. To study the importance of J1ICD in cardiac homeostasis, we generated transgenic mice expressing a tamoxifen-inducible form of J1ICD, specifically in cardiomyocytes. Using this model, we demonstrate that J1ICD-mediated Notch inhibition diminishes proliferation in the neonatal cardiomyocyte population and promotes maturation. In the neonatal heart, a response via Wnt and Akt pathway activation is elicited as an attempt to compensate for the deficit in cardiomyocyte number resulting from J1ICD activation. In the stressed adult heart, J1ICD activation results in a dramatic reduction of the number of Notch signalling cardiomyocytes, blunts the hypertrophic response, and reduces the number of apoptotic cardiomyocytes. Consistently, this occurs concomitantly with a significant down-regulation of the phosphorylation of the Akt effectors ribosomal S6 protein (S6) and eukaryotic initiation factor 4E binding protein1 (4EBP1) controlling protein synthesis. CONCLUSIONS: Altogether, these data demonstrate the importance of J1ICD in the modulation of physiological and pathological hypertrophy, and reveal the existence of a novel pathway regulating cardiac homeostasis.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/fisiologia , Miócitos Cardíacos/fisiologia , Receptor Notch1/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Proteína Jagged-1 , Proteínas de Membrana/química , Camundongos , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Serrate-Jagged , Via de Sinalização Wnt
5.
Eur Heart J ; 35(32): 2174-85, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23166366

RESUMO

AIMS: In the adult heart, Notch signalling regulates the response to injury. Notch inhibition leads to increased cardiomyocyte apoptosis, and exacerbates the development of cardiac hypertrophy and fibrosis. The role of Notch in the mesenchymal stromal cell fraction, which contains cardiac fibroblasts and cardiac precursor cells, is, however, largely unknown. In the present study, we evaluate, therefore, whether forced activation of the Notch pathway in mesenchymal stromal cells regulates pathological cardiac remodelling. METHODS AND RESULTS: We generated transgenic mice overexpressing the Notch ligand Jagged1 on the surface of cardiomyocytes to activate Notch signalling in adjacent myocyte and non-myocyte cells. In neonatal transgenic mice, activated Notch sustained cardiac precursor and myocyte proliferation after birth, and led to increased numbers of cardiac myocytes in adult mice. In the adult heart under pressure overload, Notch inhibited the development of cardiomyocyte hypertrophy and transforming growth factor-ß/connective tissue growth factor-mediated cardiac fibrosis. Most importantly, Notch activation in the stressed adult heart reduced the proliferation of myofibroblasts and stimulated the expansion of stem cell antigen-1-positive cells, and in particular of Nkx2.5-positive cardiac precursor cells. CONCLUSIONS: We conclude that Notch is pivotal in the healing process of the injured heart. Specifically, Notch regulates key cellular mechanisms in the mesenchymal stromal cell population, and thereby controls the balance between fibrotic and regenerative repair in the adult heart. Altogether, these findings indicate that Notch represents a unique therapeutic target for inducing regeneration in the adult heart via mobilization of cardiac precursor cells.


Assuntos
Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Remodelação Ventricular/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomegalia/fisiopatologia , Cardiomegalia/terapia , Proliferação de Células/fisiologia , Tamanho Celular , Constrição , Fibrose/metabolismo , Coração/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regeneração , Proteínas Serrate-Jagged , Serina-Treonina Quinases TOR/metabolismo , Fatores de Crescimento Transformadores/metabolismo
6.
Tissue Eng Part A ; 18(1-2): 198-207, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21902604

RESUMO

Weakening of cardiac function in patients with heart failure results from a loss of cardiomyocytes in the damaged heart. Cell replacement therapies as a way to induce myocardial regeneration in humans could represent attractive alternatives to classical drug-based approaches. However, a suitable source of precursor cells, which could produce a functional myocardium after transplantation, remains to be identified. In the present study, we isolated cardiovascular precursor cells from ventricles of human fetal hearts at 12 weeks of gestation. These cells expressed Nkx2.5 but not late cardiac markers such as α-actinin and troponin I. In addition, proliferating cells expressed the mesenchymal stem cell markers CD73, CD90, and CD105. Evidence for functional cardiogenic differentiation in vitro was demonstrated by the upregulation of cardiac gene expression as well as the appearance of cells with organized sarcomeric structures. Importantly, differentiated cells presented spontaneous and triggered calcium signals. Differentiation into smooth muscle cells was also detected. In contrast, precursor cells did not produce endothelial cells. The engraftment and differentiation capacity of green fluorescent protein (GFP)-labeled cardiac precursor cells were then tested in vivo after transfer into the heart of immunodeficient severe combined immunodeficient mice. Engrafted human cells were readily detected in the mouse myocardium. These cells retained their cardiac commitment and differentiated into α-actinin-positive cardiomyocytes. Expression of connexin-43 at the interface between GFP-labeled and endogenous cardiomyocytes indicated that precursor-derived cells connected to the mouse myocardium. Together, these results suggest that human ventricular nonmyocyte cells isolated from fetal hearts represent a suitable source of precursors for cell replacement therapies.


Assuntos
Separação Celular/métodos , Coração Fetal/citologia , Células-Tronco/citologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos SCID , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo
7.
Circulation ; 123(10): 1073-82, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21357822

RESUMO

BACKGROUND: Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. METHODS AND RESULTS: We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and ß-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. CONCLUSIONS: Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.


Assuntos
Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Insuficiência Cardíaca/etiologia , Frequência Cardíaca/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose , Fator Natriurético Atrial/análise , Fator Natriurético Atrial/metabolismo , Autofagia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Fatores de Iniciação em Eucariotos , Expressão Gênica/fisiologia , Insuficiência Cardíaca/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/fisiologia , Cadeias Pesadas de Miosina/análise , Cadeias Pesadas de Miosina/metabolismo , Peptídeo Natriurético Encefálico/análise , Peptídeo Natriurético Encefálico/metabolismo , Miosina não Muscular Tipo IIB/análise , Miosina não Muscular Tipo IIB/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteína Regulatória Associada a mTOR , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
8.
Circ Res ; 105(9): 912-20, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19762681

RESUMO

RATIONALE: The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. OBJECTIVE: The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. METHODS AND RESULTS: Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. CONCLUSIONS: Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/imunologia , Insuficiência Cardíaca/imunologia , Interleucina-1beta/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Miocardite/imunologia , Miocárdio/imunologia , Transdução de Sinais , Animais , Autoimunidade , Transplante de Medula Óssea , Linfócitos T CD4-Positivos/imunologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/transplante , Modelos Animais de Doenças , Progressão da Doença , Fibroblastos/imunologia , Fibrose , Adjuvante de Freund , Proteínas de Fluorescência Verde/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Imunidade Inata , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Miocardite/complicações , Miocardite/patologia , Miocardite/fisiopatologia , Miocárdio/patologia , Cadeias Pesadas de Miosina/imunologia , Fenótipo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Quimeras de Transplante
9.
Cardiovasc Drugs Ther ; 19(4): 251-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16193242

RESUMO

Myocardial infarction (MI) can induce severe alterations of contractile function that can, in turn, lead to heart failure. In a previous study, we have demonstrated that TNF-alpha was involved in cardiac contractile dysfunction 7 days after coronary artery ligation in rats. Since Angiotensin II type 1 (AT1) receptor can be involved in TNF-alpha production, we have investigated whether early short-term treatment with irbesartan, an AT1 receptor blocker, is able to limit TNF-alpha production within the heart and to improve cardiac function and geometry following MI in rats. Male Wistar rats were subjected to permanent coronary artery ligation and received either a placebo or irbesartan (50 mg/kg/day) per os daily from day 3 to day 6 after surgery. On day 7, cardiac TNF-alpha was significantly reduced in MI rats receiving irbesartan (p < 0.05). Moreover, irbesartan improved residual LV end-diastolic pressure under both basal conditions and after volume overload (p < 0.01). In addition, a significant leftward shift of the pressure-volume curve in the irbesartan-treated group was found versus placebo. Finally, infarct expansion index was also significantly improved by irbesartan (p < 0.01). In conclusion, early, short-term AT1 receptor blockade limits post-infarct cardiac TNF-alpha production and diminishes myocardial alterations observed 7 days after MI in the rat.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Tetrazóis/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Irbesartana , Masculino , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
10.
Antioxid Redox Signal ; 6(4): 792-6, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15242560

RESUMO

Prospective epidemiological studies have shown that the incidence of numerous cardiovascular pathologies is correlated with body selenium status. However, it remains unclear whether selenium status also influences the outcome of myocardial infarction. The aim of the present study was to test whether dietary selenium intake affects myocardial necrosis induced by transient regional ischemia in vivo in rats. For this purpose, male Wistar rats received either a high-selenium (High-Se: 1.5 mg of Se/kg) or a low-selenium (Low-Se: 0.05 mg of Se/kg) diet for 10 weeks. Animals were subjected to 30 min of myocardial ischemia induced by coronary artery ligation followed by 60 min of reperfusion. Pre- and postischemic blood samples were collected for glutathione (GSH and GSSG) determination and for glutathione peroxidase (GSH-Px) assessment. Our results show that high-selenium intake reduces myocardial infarct size (High-Se: 25.16 +/- 1.19% versus Low-Se: 36.51 +/- 4.14%, p < 0.05), preserves postischemic GSH/GSSG ratio (High-Se: 1.37 +/- 0.37 versus Low-Se: 0.47 +/- 0.10, p < 0.05), increases plasma GSH-Px activity, and improves postischemic mean arterial pressure. In conclusion, preischemic body selenium status is a major determinant of the outcome of myocardial ischemia in vivo in rats probably because it influences the cellular redox status.


Assuntos
Infarto do Miocárdio/patologia , Isquemia Miocárdica/metabolismo , Selênio/sangue , Animais , Pressão Sanguínea , Dieta , Glutationa/sangue , Glutationa Peroxidase/sangue , Humanos , Masculino , Oxirredução , Distribuição Aleatória , Ratos , Ratos Wistar , Selênio/administração & dosagem
11.
Antioxid Redox Signal ; 6(2): 431-8, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15025945

RESUMO

It is now well established that oxidative stress resulting from reactive oxygen species (ROS) that are generated in cardiac myocytes subjected to ischemia/reperfusion plays a causative role in the development of heart failure and may contribute to promote cell death. During the last decade, several groups have reported that, in animal models of myocardial ischemia/reperfusion, certain nutrients, including ethanol and nonethanolic components of wine, may have a specific protective effect on the myocardium, independent of the classical risk factors implicated in vascular atherosclerosis and thrombosis. Mechanisms through which the consumption of alcoholic beverages protects against ischemia-induced cardiac injury are still unknown. One major open question is whether ethanol and nonethanolic components of wine are cardioprotective, at least in part, by interfering with the myocardial prooxidant/antioxidant balance. Important concepts, such as cardiac preconditioning, are now entering the field of nutrition, and recent experimental evidence suggests that ethanol and/or nonethanolic components of wine might exert preconditioning effects in animal models of myocardial ischemia/reperfusion. There is no doubt that such an observation, if confirmed in human subjects, might open new perspectives in the prevention and treatment of ischemic coronary heart disease.


Assuntos
Antioxidantes/metabolismo , Etanol/farmacologia , Coração/efeitos dos fármacos , Oxidantes/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Vinho , Animais , Humanos , Miocárdio/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA