Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Elife ; 122023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818717

RESUMO

In vivo, bacterial actin MreB assembles into dynamic membrane-associated filamentous structures that exhibit circumferential motion around the cell. Current knowledge of MreB biochemical and polymerization properties in vitro remains limited and is mostly based on MreB proteins from Gram-negative species. In this study, we report the first observation of organized protofilaments by electron microscopy and the first 3D-structure of MreB from a Gram-positive bacterium. We show that Geobacillus stearothermophilus MreB forms straight pairs of protofilaments on lipid surfaces in the presence of ATP or GTP, but not in the presence of ADP, GDP or non-hydrolysable ATP analogs. We demonstrate that membrane anchoring is mediated by two spatially close short hydrophobic sequences while electrostatic interactions also contribute to lipid binding, and show that the population of membrane-bound protofilament doublets is in steady-state. In solution, protofilament doublets were not detected in any condition tested. Instead, MreB formed large sheets regardless of the bound nucleotide, albeit at a higher critical concentration. Altogether, our results indicate that both lipids and ATP are facilitators of MreB polymerization, and are consistent with a dual effect of ATP hydrolysis, in promoting both membrane binding and filaments assembly/disassembly.


Assuntos
Actinas , Nucleotídeos , Actinas/metabolismo , Nucleotídeos/metabolismo , Polimerização , Trifosfato de Adenosina/metabolismo , Lipídeos , Proteínas de Bactérias/metabolismo
2.
J Cell Sci ; 136(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815088

RESUMO

Septins are essential cytoskeletal proteins involved in key cellular processes and have also been implicated in diseases from cancers to neurodegenerative pathologies. However, they have not been as thoroughly studied as other cytoskeletal proteins. In vivo, septins interact with other cytoskeletal proteins and with the inner plasma membrane. Hence, bottom-up in vitro cell-free assays are well suited to dissect the roles and behavior of septins in a controlled environment. Specifically, in vitro studies have been invaluable in describing the self-assembly of septins into a large diversity of ultrastructures. Given that septins interact specifically with membrane, the details of these septin-membrane interactions have been analyzed using reconstituted lipid systems. In particular, at a membrane, septins are often localized at curvatures of micrometer scale. In that context, in vitro assays have been performed with substrates of varying curvatures (spheres, cylinders or undulated substrates) to probe the sensitivity of septins to membrane curvature. This Review will first present the structural properties of septins in solution and describe the interplay of septins with cytoskeletal partners. We will then discuss how septins interact with biomimetic membranes and induce their reshaping. Finally, we will highlight the curvature sensitivity of septins and how they alter the mechanical properties of membranes.


Assuntos
Citoesqueleto , Septinas , Septinas/metabolismo , Citoesqueleto/metabolismo , Membrana Celular/metabolismo
3.
J Cell Sci ; 133(18)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32895245

RESUMO

Motile and morphological cellular processes require a spatially and temporally coordinated branched actin network that is controlled by the activity of various regulatory proteins, including the Arp2/3 complex, profilin, cofilin and tropomyosin. We have previously reported that myosin 1b regulates the density of the actin network in the growth cone. Here, by performing in vitro F-actin gliding assays and total internal reflection fluorescence (TIRF) microscopy, we show that this molecular motor flattens (reduces the branch angle) in the Arp2/3-dependent actin branches, resulting in them breaking, and reduces the probability of new branches forming. This experiment reveals that myosin 1b can produce force sufficient enough to break up the Arp2/3-mediated actin junction. Together with the former in vivo studies, this work emphasizes the essential role played by myosins in the architecture and dynamics of actin networks in different cellular regions.This article has an associated First Person interview with the first author of the paper.


Assuntos
Citoesqueleto de Actina , Complexo 2-3 de Proteínas Relacionadas à Actina , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Humanos , Miosinas/genética , Miosinas/metabolismo , Ligação Proteica
4.
Nat Cell Biol ; 22(7): 803-814, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572169

RESUMO

Cell shape is controlled by the submembranous cortex, an actomyosin network mainly generated by two actin nucleators: the Arp2/3 complex and the formin mDia1. Changes in relative nucleator activity may alter cortical organization, mechanics and cell shape. Here we investigate how nucleation-promoting factors mediate interactions between nucleators. In vitro, the nucleation-promoting factor SPIN90 promotes formation of unbranched filaments by Arp2/3, a process thought to provide the initial filament for generation of dendritic networks. Paradoxically, in cells, SPIN90 appears to favour a formin-dominated cortex. Our in vitro experiments reveal that this feature stems mainly from two mechanisms: efficient recruitment of mDia1 to SPIN90-Arp2/3 nucleated filaments and formation of a ternary SPIN90-Arp2/3-mDia1 complex that greatly enhances filament nucleation. Both mechanisms yield rapidly elongating filaments with mDia1 at their barbed ends and SPIN90-Arp2/3 at their pointed ends. Thus, in networks, SPIN90 lowers branching densities and increases the proportion of long filaments elongated by mDia1.


Assuntos
Citoesqueleto de Actina/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Forminas/metabolismo , Melanoma/patologia , Proteínas Musculares/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Blástula/citologia , Blástula/metabolismo , Forma Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Forminas/genética , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas Musculares/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
5.
J Cell Sci ; 132(5)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770478

RESUMO

Cell biologists from all around the world gathered in Paris on the 26 to 28 September 2018 to participate in the 3rd international meeting 'Building the Cell'. It was organized by Hélène Barelli, Arnaud Echard, Thierry Galli, Florence Niedergang, Manuel Théry and Marie Hélène Verlhac on behalf of the French Society for Cell Biology (SBCF) at the Institut Pasteur. Around 230 participants joined the meeting for stimulating talks, discussions, poster sessions, and a gala dinner on the Seine that included a music performance by the rock group 'Membrane Band'. The unifying theme of the meeting was the development of creative multidisciplinary approaches to understand cellular life at different scales in a dynamic and quantitative manner. Here, we summarize the results presented at the meeting and the emerging ideas from the different sessions.


Assuntos
Biologia Celular/tendências , Citoesqueleto/metabolismo , Neoplasias/patologia , Células-Tronco/fisiologia , Animais , Desenvolvimento Embrionário , França , Humanos , Morfogênese , Neoplasias/metabolismo , Transporte Proteico
6.
J Biol Chem ; 292(47): 19491-19502, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28972149

RESUMO

Within the plant ATP-binding cassette transporter family, pleiotropic drug resistance (PDR) transporters play essential functions, such as in hormone transport or defense against biotic and abiotic stresses. NtPDR1 from Nicotiana tabacum has been shown to be involved in the constitutive defense against pathogens through the secretion of toxic cyclic diterpenes, such as the antimicrobial substrates cembrene and sclareol from the leaf hairs (trichomes). However, direct evidence of an interaction between NtPDR1 and terpenes is lacking. Here, we stably expressed NtPDR1 in N. tabacum BY-2 suspension cells. NtPDR1 was purified as an active monomer glycosylated at a single site in the third external loop. NtPDR1 reconstitution in proteoliposomes stimulated its basal ATPase activity from 21 to 38 nmol of Pi·mg-1·min-1, and ATPase activity was further stimulated by the NtPDR1 substrates cembrene and sclareol, providing direct evidence of an interaction between NtPDR1 and its two substrates. Interestingly, NtPDR1 was also stimulated by capsidiol, a sesquiterpene produced by N. tabacum upon pathogen attack. We also monitored the transcriptional activity from the NtPDR1 promoter in situ with a reporter gene and found that, although NtPDR1 expression was limited to trichomes under normal conditions, addition of methyl jasmonate, a biotic stress hormone, induced expression in all leaf tissues. This finding indicated that NtPDR1 is involved not only in constitutive but also in induced plant defenses. In conclusion, we provide direct evidence of an interaction between the NtPDR1 transporter and its substrates and that NtPDR1 transports compounds involved in both constitutive (diterpenes) and induced (sesquiterpenes) plant defenses.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Diterpenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nicotiana/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Sesquiterpenos/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento
7.
Biochem J ; 474(10): 1689-1703, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28298475

RESUMO

Pleiotropic drug resistance (PDR) transporters belong to the ABCG subfamily of ATP-binding cassette (ABC) transporters and are involved in the transport of various molecules across plasma membranes. During evolution, PDR genes appeared independently in fungi and in plants from a duplication of a half-size ABC gene. The enzymatic properties of purified PDR transporters from yeast have been characterized. This is not the case for any plant PDR transporter, or, incidentally, for any purified plant ABC transporter. Yet, plant PDR transporters play important roles in plant physiology such as hormone signaling or resistance to pathogens or herbivores. Here, we describe the expression, purification, enzymatic characterization and 2D analysis by electron microscopy of NpABCG5/NpPDR5 from Nicotiana plumbaginifolia, which has been shown to be involved in the plant defense against herbivores. We constitutively expressed NpABCG5/NpPDR5, provided with a His-tag in a homologous system: suspension cells from Nicotiana tabacum (Bright Yellow 2 line). NpABCG5/NpPDR5 was targeted to the plasma membrane and was solubilized by dodecyl maltoside and purified by Ni-affinity chromatography. The ATP-hydrolyzing specific activity (27 nmol min-1 mg-1) was stimulated seven-fold in the presence of 0.1% asolectin. Electron microscopy analysis indicated that NpABCG5/NpPDR5 is monomeric and with dimensions shorter than those of known ABC transporters. Enzymatic data (optimal pH and sensitivity to inhibitors) confirmed that plant and fungal PDR transporters have different properties. These data also show that N. tabacum suspension cells are a convenient host for the purification and biochemical characterization of ABC transporters.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Cultivadas , Cromatografia de Afinidade , Detergentes/química , Glucosídeos/química , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Moduladores de Transporte de Membrana/farmacologia , Microscopia Eletrônica , Peso Molecular , Fosfatidilcolinas/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Conformação Proteica , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Nicotiana/citologia , Nicotiana/enzimologia
8.
Nat Cell Biol ; 16(4): 322-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24633326

RESUMO

Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Septinas/metabolismo , Actomiosina/metabolismo , Animais , Divisão Celular , Fase de Clivagem do Zigoto/metabolismo , Citocinese/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Humanos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutação , Miosinas/genética , Miosinas/metabolismo , Ligação Proteica/fisiologia , Septinas/genética
9.
Proteins ; 81(11): 1964-79, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23775754

RESUMO

Budding yeast septins assemble into hetero-octamers and filaments required for cytokinesis. Solvent-exposed cysteine (Cys) residues provide sites for attaching substituents useful in assessing assembly kinetics and protein interactions. To introduce Cys at defined locations, site-directed mutagenesis was used, first, to replace the native Cys residues in Cdc3 (C124 C253 C279), Cdc10 (C266), Cdc11 (C43 C137 C138), Cdc12 (C40 C278), and Shs1 (C29 C148) with Ala, Ser, Val, or Phe. When plasmid-expressed, each Cys-less septin mutant rescued the cytokinesis defects caused by absence of the corresponding chromosomal gene. When integrated and expressed from its endogenous promoter, the same mutants were fully functional, except Cys-less Cdc12 mutants (which were viable, but exhibited slow growth and aberrant morphology) and Cdc3(C124V C253V C279V) (which was inviable). No adverse phenotypes were observed when certain pairs of Cys-less septins were co-expressed as the sole source of these proteins. Cells grew less well when three Cys-less septins were co-expressed, suggesting some reduction in fitness. Nonetheless, cells chromosomally expressing Cys-less Cdc10, Cdc11, and Cdc12, and expressing Cys-less Cdc3 from a plasmid, grew well at 30°C. Moreover, recombinant Cys-less septins--or where one of the Cys-less septins contained a single Cys introduced at a new site--displayed assembly properties in vitro indistinguishable from wild-type.


Assuntos
Proteínas de Ciclo Celular/química , Cisteína/química , Saccharomyces cerevisiae/metabolismo , Septinas/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mutagênese Sítio-Dirigida , Septinas/genética , Septinas/metabolismo
10.
J Mol Biol ; 404(4): 711-31, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20951708

RESUMO

Septins are a conserved family of GTP-binding proteins that assemble into symmetric linear heterooligomeric complexes, which in turn are able to polymerize into apolar filaments and higher-order structures. In budding yeast (Saccharomyces cerevisiae) and other eukaryotes, proper septin organization is essential for processes that involve membrane remodeling, such as the execution of cytokinesis. In yeast, four septin subunits form a Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 heterooctameric rod that polymerizes into filaments thought to form a collar around the bud neck in close contact with the inner surface of the plasma membrane. To explore septin-membrane interactions, we examined the effect of lipid monolayers on septin organization at the ultrastructural level using electron microscopy. Using this methodology, we have acquired new insights into the potential effect of septin-membrane interactions on filament assembly and, more specifically, on the role of phosphoinositides. Our studies demonstrate that budding yeast septins interact specifically with phosphatidylinositol-4,5-bisphosphate (PIP2) and indicate that the N terminus of Cdc10 makes a major contribution to the interaction of septin filaments with PIP2. Furthermore, we found that the presence of PIP2 promotes filament polymerization and organization on monolayers, even under conditions that prevent filament formation in solution or for mutants that prevent filament formation in solution. In the extreme case of septin complexes lacking the normally terminal subunit Cdc11 or the normally central Cdc10 doublet, the combination of the PIP2-containing monolayer and nucleotide permitted filament formation in vitro via atypical Cdc12-Cdc12 and Cdc3-Cdc3 interactions, respectively.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Proteínas do Citoesqueleto/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Complexos Multiproteicos/ultraestrutura , Multimerização Proteica , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Septinas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA