Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Vet Res ; 85(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316105

RESUMO

OBJECTIVE: To evaluate the fecal bacterial microbiota at the time of diagnosis (T0) and after 1 month of therapy (T1) in cats diagnosed with lymphoplasmacytic enteritis (LPE) or cats with low-grade intestinal T-cell lymphoma (LGITL) and to compare these findings with those of healthy cats. ANIMALS: 5 healthy cats, 13 cats with LPE, and 7 cats with LGITL were prospectively enrolled between June 2020 and June 2021. METHODS: Fecal samples were collected at T0 and T1, and DNA was extracted for 16S ribosomal amplicon sequencing. Alpha diversity and beta diversity were computed. The taxonomic assignment was performed using sequences from the Silva v138 formatted reference database. Differential abundant taxa were selected in each taxonomic level, with the P value adjusted < .05, as the cut-off. RESULTS: No significant differences in alpha and beta diversity were found either at T0 or T1 between healthy and diseased cats or between cats with LPE and LGITL. Beta-diversity analysis showed an increase in the Fusobacteriaceae family in cats with LGITL at T0, compared to cats with LPE. Regardless of histological diagnosis, several microbiota differences were found at T0 based on serum cobalamin levels. CLINICAL RELEVANCE: Fecal samples were successfully used to characterize the bacteriome of the intestinal tract in cats by 16S rRNA gene sequencing. However, results highlighted that the metagenomic evaluation was not useful to discriminate between LPE and LGITL nor to predict the therapeutic response in this study population.


Assuntos
Doenças do Gato , Enterite , Linfoma de Células T , Microbiota , Humanos , Gatos , Animais , RNA Ribossômico 16S/genética , Enterite/diagnóstico , Enterite/veterinária , Fezes/microbiologia , Bactérias , Linfoma de Células T/veterinária , Doenças do Gato/diagnóstico
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339187

RESUMO

The early identification of a subclinical rejection (SCR) can improve the long-term outcome of the transplanted kidney through intensified immunosuppression. However, the only approved diagnostic method is the protocol biopsy, which remains an invasive method and not without minor and/or major complications. The protocol biopsy is defined as the sampling of allograft tissue at pre-established times even in the absence of an impaired renal function; however, it does not avoid histological damage. Therefore, the discovery of new possible biomarkers useful in the prevention of SCR has gained great interest. Among all the possible candidates, there are microRNAs (miRNAs), which are short, noncoding RNA sequences, that are involved in mediating numerous post-transcriptional pathways. They can be found not only in tissues, but also in different biological fluids, both as free particles and contained in extracellular vesicles (EVs) released by different cell types. In this study, we firstly performed a retrospective miRNA screening analysis on biopsies and serum EV samples of 20 pediatric transplanted patients, followed by a second screening on another 10 pediatric transplanted patients' urine samples at one year post-transplant. In both cohorts, we divided the patients into two groups: patients with histological SCR and patients without histological SCR at one year post-transplantation. The isolated miRNAs were analyzed in an NGS platform to identify different expressions in the two allograft states. Although no statistical data were found in sera, in the tissue and urinary EVs, we highlighted signatures of miRNAs associated with the histological SCR state.


Assuntos
Transplante de Rim , MicroRNAs , Humanos , Criança , MicroRNAs/genética , Transplante de Rim/efeitos adversos , Estudos Retrospectivos , Rim/patologia , Biópsia , Biomarcadores/urina , Rejeição de Enxerto/patologia
3.
FEBS Lett ; 595(18): 2350-2365, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34409594

RESUMO

Cancer is considered a high-risk condition for severe illness resulting from COVID-19. The interaction between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and human metabolism is key to elucidating the risk posed by COVID-19 for cancer patients and identifying effective treatments, yet it is largely uncharacterised on a mechanistic level. We present a genome-scale map of short-term metabolic alterations triggered by SARS-CoV-2 infection of cancer cells. Through transcriptomic- and proteomic-informed genome-scale metabolic modelling, we characterise the role of RNA and fatty acid biosynthesis in conjunction with a rewiring in energy production pathways and enhanced cytokine secretion. These findings link together complementary aspects of viral invasion of cancer cells, while providing mechanistic insights that can inform the development of treatment strategies.


Assuntos
COVID-19/metabolismo , Glicólise , Modelos Biológicos , Neoplasias/metabolismo , SARS-CoV-2/metabolismo , COVID-19/complicações , Linhagem Celular Tumoral , Genoma Humano , Humanos , Neoplasias/complicações , Proteômica , SARS-CoV-2/isolamento & purificação
4.
Int J Mol Sci ; 21(2)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947599

RESUMO

Dent disease (DD), an X-linked renal tubulopathy, is mainly caused by loss-of-function mutations in CLCN5 (DD1) and OCRL genes. CLCN5 encodes the ClC-5 antiporter that in proximal tubules (PT) participates in the receptor-mediated endocytosis of low molecular weight proteins. Few studies have analyzed the PT expression of ClC-5 and of megalin and cubilin receptors in DD1 kidney biopsies. About 25% of DD cases lack mutations in either CLCN5 or OCRL genes (DD3), and no other disease genes have been discovered so far. Sanger sequencing was used for CLCN5 gene analysis in 158 unrelated males clinically suspected of having DD. The tubular expression of ClC-5, megalin, and cubilin was assessed by immunolabeling in 10 DD1 kidney biopsies. Whole exome sequencing (WES) was performed in eight DD3 patients. Twenty-three novel CLCN5 mutations were identified. ClC-5, megalin, and cubilin were significantly lower in DD1 than in control biopsies. The tubular expression of ClC-5 when detected was irrespective of the type of mutation. In four DD3 patients, WES revealed 12 potentially pathogenic variants in three novel genes (SLC17A1, SLC9A3, and PDZK1), and in three genes known to be associated with monogenic forms of renal proximal tubulopathies (SLC3A, LRP2, and CUBN). The supposed third Dent disease-causing gene was not discovered.


Assuntos
Canais de Cloreto/genética , Doença de Dent/genética , Doença de Dent/patologia , Predisposição Genética para Doença , Nefropatias/genética , Nefropatias/patologia , Mutação , Biomarcadores , Biópsia , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Imuno-Histoquímica , Sequenciamento do Exoma
5.
FASEB J ; 34(1): 631-647, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914608

RESUMO

In mammalian cells, the catabolic activity of the dNTP triphosphohydrolase SAMHD1 sets the balance and concentration of the four dNTPs. Deficiency of SAMHD1 leads to unequally increased pools and marked dNTP imbalance. Imbalanced dNTP pools increase mutation frequency in cancer cells, but it is not known if the SAMHD1-induced dNTP imbalance favors accumulation of somatic mutations in non-transformed cells. Here, we have investigated how fibroblasts from Aicardi-Goutières Syndrome (AGS) patients with mutated SAMHD1 react to the constitutive pool imbalance characterized by a huge dGTP pool. We focused on the effects on dNTP pools, cell cycle progression, dynamics and fidelity of DNA replication, and efficiency of UV-induced DNA repair. AGS fibroblasts entered senescence prematurely or upregulated genes involved in G1/S transition and DNA replication. The normally growing AGS cells exhibited unchanged DNA replication dynamics and, when quiescent, faster rate of excision repair of UV-induced DNA damages. To investigate whether the lack of SAMHD1 affects DNA replication fidelity, we compared de novo mutations in AGS and WT cells by exome next-generation sequencing. Somatic variant analysis indicated a mutator phenotype suggesting that SAMHD1 is a caretaker gene whose deficiency is per se mutagenic, promoting genome instability in non-transformed cells.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Fibroblastos/metabolismo , Mutação/genética , Malformações do Sistema Nervoso/genética , Proteína 1 com Domínio SAM e Domínio HD/deficiência , Dano ao DNA/genética , Replicação do DNA/genética , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA