Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 179(8): 1753-1768, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34825370

RESUMO

BACKGROUND AND PURPOSE: Airway remodelling is a critical feature of chronic lung diseases. Epithelial-mesenchymal transition (EMT) represents an important source of myofibroblasts, contributing to airway remodelling. Here, we investigated the sphingosine-1-phosphate (S1P) role in EMT and its involvement in asthma-related airway dysfunction. EXPERIMENTAL APPROACH: A549 cells were used to assess the S1P effect on EMT and its interaction with TGF-ß signalling. To assess the S1P role in vivo and its impact on lung function, two experimental models of asthma were used by exposing BALB/c mice to subcutaneous administration of either S1P or ovalbumin (OVA). KEY RESULTS: Following incubation with TGF-ß or S1P, A549 acquire a fibroblast-like morphology associated with an increase of mesenchymal markers and down-regulation of the epithelial. These effects are reversed by treatment with the TGF-ß receptor antagonist LY2109761. Systemic administration of S1P to BALB/c mice induces asthma-like disease characterized by mucous cell metaplasia and increased levels of TGF-ß, IL-33 and FGF-2 within the lung. The bronchi harvested from S1P-treated mice display bronchial hyperresponsiveness associated with overexpression of the mesenchymal and fibrosis markers and reduction of the epithelial.The S1P-induced switch from the epithelial toward the mesenchymal pattern correlates to a significant increase of lung resistance and fibroblast activation. TGF-ß blockade, in S1P-treated mice, abrogates these effects. Finally, inhibition of sphingosine kinases by SK1-II in OVA-sensitized mice, abrogates EMT, pulmonary TGF-ß up-regulation, fibroblasts recruitment and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS: Targeting S1P/TGF-ß axis may hold promise as a feasible therapeutic target to control airway dysfunction in asthma.


Assuntos
Asma , Transição Epitelial-Mesenquimal , Esfingosina , Fator de Crescimento Transformador beta , Remodelação das Vias Aéreas , Animais , Asma/metabolismo , Asma/patologia , Células Epiteliais , Lisofosfolipídeos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1
2.
J Pept Sci ; 19(11): 717-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24133031

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive lipid with key functions in the immune, inflammatory, and cardiovascular systems. S1P exerts its action through the interaction with a family of five known G protein-coupled receptors, named S1P(1-5). Among them, S1P(3) has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. KRX-725 (compound 1) is a pepducin that mimics the effects of S1P by triggering specifically S1P(3). Here, aiming to identify novel S1P(3) antagonists, we carried out an alanine scanning analysis to address the contribution of the side chains of each amino acid residue to the peptide function. Then, deleted peptides from both the C- and N-terminus were prepared in order to determine the minimal sequence for activity and to identify the structural requirements for agonistic and, possibly, antagonistic behaviors. The pharmacological results of the Ala-scan derived compounds (2-10) suggested a high tolerance of the pepducin 1 to amino acid substitutions. Importantly, the deleted peptide 16 has the ability to inhibit, in a dose-dependent manner, both pepducin 1-induced vasorelaxation and fibroblast proliferation. Finally, a computational analysis was performed on the prepared compounds, showing that the supposed antagonists 16 and 17 appeared to be aligned with each other but not with the others. These results suggested a correlation between specific conformations and activities.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Vasodilatadores/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Células Cultivadas , Técnicas In Vitro , Masculino , Camundongos , Modelos Moleculares , Contração Muscular/efeitos dos fármacos , Fragmentos de Peptídeos/química , Receptores de Lisoesfingolipídeo/química , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato , Vasodilatadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA