Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(12): 10401-10424, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38866385

RESUMO

We previously reported trisubstituted pyrimidine lead compounds, namely, ARN22089 and ARN25062, which block the interaction between CDC42 with its specific downstream effector, a PAK protein. This interaction is crucial for the progression of multiple tumor types. Such inhibitors showed anticancer efficacy in vivo. Here, we describe a second class of CDC42 inhibitors with favorable drug-like properties. Out of the 25 compounds here reported, compound 15 (ARN25499) stands out as the best lead compound with an improved pharmacokinetic profile, increased bioavailability, and efficacy in an in vivo PDX tumor mouse model. Our results indicate that these CDC42 inhibitors represent a promising chemical class toward the discovery of anticancer drugs, with ARN25499 as an additional lead candidate for preclinical development.


Assuntos
Antineoplásicos , Proteína cdc42 de Ligação ao GTP , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Camundongos , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Pirimidinas/farmacocinética , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Feminino
2.
J Cyst Fibros ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38789319

RESUMO

BACKGROUND: We recently demonstrated that 48 h exposure of primary human bronchial epithelial (hBE) cells, obtained from both CF (F508del homozygous) and non-CF subjects, to the triple drug combination Elexacaftor/Tezacaftor/Ivacaftor (ETI) results in a CFTR genotype-independent modulation of the de novo synthethic pathway of sphingolipids, with an accumulation of dihydroceramides (dHCer). Since dHCer are converted into ceramides (Cer) by the action of a delta-4 sphingolipid desaturase (DEGS) enzyme, we aimed to better understand this off-target effect of ETI (i.e., not related to CFTR rescue) METHODS: hBE cells, both F508del and wild-type, were cultured to create fully differentiated bronchial epithelia. We analyzed Cer and dHCer using an LC-MS based method previously developed by our lab. DEGS expression levels in differentiated hBE cells lysates were quantified by western blot analysis. RESULTS: We demonstrated that 1) dHCer accumulate in hBE with time following prolonged ETI exposure, that 2) similar inhibition occurs in wild-type primary human hepatocytes and that 3) this does not result in an alteration of DEGS expression. We then proved that 4) ETI is a direct inhibitor of DEGS, that 5) Tezacaftor is the molecule responsible for this effect, that 6) the inhibition is concentration dependent. Finally, after repeated oral administration of ETI to naïve, non-CF, mice, we observed a slight accumulation of dHCer in the brain. CONCLUSIONS: We believe that further investigations on Tezacaftor should be envisaged, particularly for the use of ETI during pregnancy, breastfeeding and in the early stages of development. DEGS dysfunction and dHCer accumulation causes impairment in the development of the nervous system, due to a derangement in myelin formation and maintenance.

3.
J Med Chem ; 66(8): 5981-6001, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37026468

RESUMO

CDC42 GTPases (RHOJ, CDC42, and RHOQ) are overexpressed in multiple tumor types and activate pathways critical for tumor growth, angiogenesis, and metastasis. Recently, we reported the discovery of a novel lead compound, ARN22089, which blocks the interaction of CDC42 GTPases with specific downstream effectors. ARN22089 blocks tumor growth in BRAF mutant mouse melanoma models and patient-derived xenografts (PDXs) in vivo. ARN22089 also inhibits tumor angiogenesis in three-dimensional vascularized microtumor models in vitro. Notably, ARN22089 belongs to a novel class of trisubstituted pyrimidines. Based on these results, we describe an extensive structure-activity relationship of ∼30 compounds centered on ARN22089. We discovered and optimized two novel inhibitors (27, ARN25062, and 28, ARN24928), which are optimal back-up/follow-up leads with favorable drug-like properties and in vivo efficacy in PDX tumors. These findings further demonstrate the potential of this class of CDC42/RHOJ inhibitors for cancer treatment, with lead candidates ready for advanced preclinical studies.


Assuntos
Neoplasias , Proteínas rho de Ligação ao GTP , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neovascularização Patológica , Quinases Ativadas por p21/metabolismo , Ligação Proteica
5.
Cell Rep ; 39(1): 110641, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385746

RESUMO

CDC42 family GTPases (RHOJ, RHOQ, CDC42) are upregulated but rarely mutated in cancer and control both the ability of tumor cells to invade surrounding tissues and the ability of endothelial cells to vascularize tumors. Here, we use computer-aided drug design to discover a chemical entity (ARN22089) that has broad activity against a panel of cancer cell lines, inhibits S6 phosphorylation and MAPK activation, activates pro-inflammatory and apoptotic signaling, and blocks tumor growth and angiogenesis in 3D vascularized microtumor models (VMT) in vitro. Additionally, ARN22089 has a favorable pharmacokinetic profile and can inhibit the growth of BRAF mutant mouse melanomas and patient-derived xenografts in vivo. ARN22089 selectively blocks CDC42 effector interactions without affecting the binding between closely related GTPases and their downstream effectors. Taken together, we identify a class of therapeutic agents that influence tumor growth by modulating CDC42 signaling in both the tumor cell and its microenvironment.


Assuntos
Células Endoteliais , Neoplasias , Animais , Células Endoteliais/metabolismo , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Transdução de Sinais , Microambiente Tumoral , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
6.
Diabetes Metab Res Rev ; 38(2): e3492, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34435429

RESUMO

AIMS: To investigate if extra virgin olive oil (EVOO) or palm oil enriched chocolate spreads consumption leads to different results in terms of plasma ceramides concentration, glucose and lipid metabolism, inflammatory markers and appetite regulation in young healthy subjects. METHODS: In a 2-week, double-blind, cross-over, randomised controlled trial, 20 healthy, normal-weight subjects with a mean age of 24.2 years (SD: 1.2), consumed chocolate spread snacks (73% of energy [%E] from fat, 20% from carbohydrates and 7% from proteins), providing 570 Kcal/day added to an isocaloric diet. The chocolate spreads were identical, except for the type of fat: EVOO oil, rich in monounsaturated fatty acids (MUFAs), or palm oil, rich in Saturated Fatty Acids (SFAs). RESULTS: EVOO-enriched chocolate spread consumption led to better circulating sphingolipids and glucose profile, with reduced plasma ceramide C16:0, ceramide C16:0/ceramide C22:0-ceramide C24:0 ratio and sphingomyelin C18:0 (P = 0.030, P= 0.032 and P = 0.042, respectively) compared to the palm oil-enriched chocolate spread diet. HOMA-IR and plasma insulin were lower, while the Quicki and the McAuley Index were higher after the EVOO diet compared to the palm oil diet (P = 0.046, P = 0.045, P = 0.018 and P = 0.039 respectively). Subjects maintained a stable weight throughout the study. No major significant changes in total cholesterol, triglycerides, HDL, inflammatory markers, and appetite-regulating hormones/visual analogue scale were observed between the groups. CONCLUSIONS: Partially replacing SFAs with MUFAs in a chocolate-based snack as part of a short-term isocaloric diet in healthy individuals may limit SFAs detrimental effects on insulin sensitivity and decrease circulating harmful sphingolipids in young adults.


Assuntos
Chocolate , Resistência à Insulina , Insulinas , Adulto , Estudos Cross-Over , Humanos , Azeite de Oliva , Óleo de Palmeira , Adulto Jovem
7.
J Med Chem ; 63(24): 15821-15851, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33290061

RESUMO

Acid ceramidase (AC) is a cysteine hydrolase that plays a crucial role in the metabolism of lysosomal ceramides, important members of the sphingolipid family, a diversified class of bioactive molecules that mediate many biological processes ranging from cell structural integrity, signaling, and cell proliferation to cell death. In the effort to expand the structural diversity of the existing collection of AC inhibitors, a novel class of substituted oxazol-2-one-3-carboxamides were designed and synthesized. Herein, we present the chemical optimization of our initial hits, 2-oxo-4-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 8a and 2-oxo-5-phenyl-N-(4-phenylbutyl)oxazole-3-carboxamide 12a, which resulted in the identification of 5-[4-fluoro-2-(1-methyl-4-piperidyl)phenyl]-2-oxo-N-pentyl-oxazole-3-carboxamide 32b as a potent AC inhibitor with optimal physicochemical and metabolic properties, showing target engagement in human neuroblastoma SH-SY5Y cells and a desirable pharmacokinetic profile in mice, following intravenous and oral administration. 32b enriches the arsenal of promising lead compounds that may therefore act as useful pharmacological tools for investigating the potential therapeutic effects of AC inhibition in relevant sphingolipid-mediated disorders.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Oxazolona/química , Ceramidase Ácida/metabolismo , Administração Oral , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Concentração Inibidora 50 , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos/metabolismo , Simulação de Acoplamento Molecular , Oxazolona/metabolismo , Oxazolona/farmacocinética , Solubilidade , Relação Estrutura-Atividade
8.
Front Chem ; 8: 573211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134274

RESUMO

Photodynamic therapy is currently one of the most promising approaches for targeted cancer treatment. It is based on responses of vital physiological signals, namely, reactive oxygen species (ROS), which are associated with diseased condition development, such as tumors. This study presents the synthesis, incorporation, and application of a diiodo-BODIPY-based photosensitizer, based on a non-covalent functionalization of carbon nano-onions (CNOs). In vitro assays demonstrate that HeLa cells internalize the diiodo-BODIPY molecules and their CNO nanohybrids. Upon cell internalization and light exposure, the pyrene-diiodo-BODIPY molecules induce an increase of the ROS level of HeLa cells, resulting in remarkable photomediated cytotoxicity and apoptosis. Conversely, when HeLa cells internalize the diiodo-BODIPY/CNO nanohybrids, no significant cytotoxicity or ROS basal level increase can be detected. These results define a first step toward the understanding of carbon nanomaterials that function as molecular shuttles for photodynamic therapeutics, boosting the modulation of the photosensitizer.

9.
J Med Chem ; 63(21): 12873-12886, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33079544

RESUMO

We disclose a novel class of 6-amino-tetrahydroquinazoline derivatives that inhibit human topoisomerase II (topoII), a validated target of anticancer drugs. In contrast to topoII-targeted drugs currently in clinical use, these compounds do not act as topoII poisons that enhance enzyme-mediated DNA cleavage, a mechanism that is linked to the development of secondary leukemias. Instead, these tetrahydroquinazolines block the topoII function with no evidence of DNA intercalation. We identified a potent lead compound [compound 14 (ARN-21934) IC50 = 2 µM for inhibition of DNA relaxation, as compared to an IC50 = 120 µM for the anticancer drug etoposide] with excellent metabolic stability and solubility. This new compound also shows ~100-fold selectivity for topoIIα over topoß, a broad antiproliferative activity toward cultured human cancer cells, a favorable in vivo pharmacokinetic profile, and the ability to penetrate the blood-brain barrier. Thus, ARN-21934 is a highly promising lead for the development of novel and potentially safer topoII-targeted anticancer drugs.


Assuntos
DNA Topoisomerases Tipo II/química , Quinidina/análogos & derivados , Inibidores da Topoisomerase II/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/metabolismo , Clivagem do DNA , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Meia-Vida , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Quinidina/química , Quinidina/metabolismo , Quinidina/farmacologia , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacologia
10.
J Med Chem ; 63(19): 11169-11194, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32946228

RESUMO

Cystic fibrosis (CF) is a life-threatening autosomal recessive disease, caused by mutations in the CF transmembrane conductance regulator (CFTR) chloride channel. CFTR modulators have been reported to address the basic defects associated with CF-causing mutations, partially restoring the CFTR function in terms of protein processing and/or channel gating. Small-molecule compounds, called potentiators, are known to ameliorate the gating defect. In this study, we describe the identification of the 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole core as a novel chemotype of potentiators. In-depth structure-activity relationship studies led to the discovery of enantiomerically pure 39 endowed with a good efficacy in rescuing the gating defect of F508del- and G551D-CFTR and a promising in vitro druglike profile. The in vivo characterization of γ-carboline 39 showed considerable exposure levels and good oral bioavailability, with detectable distribution to the lungs after oral administration to rats. Overall, these findings may represent an encouraging starting point to further expand this chemical class, adding a new chemotype to the existing classes of CFTR potentiators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Indóis/farmacologia , Animais , Humanos , Indóis/química , Masculino , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
11.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32673287

RESUMO

In recent years, a number of drugs have been approved for the treatment of cystic fibrosis (CF). Among them, newly released Trikafta, a combination of 3 drugs (VX-661/VX-445/VX-770), holds great promise to radically improve the quality of life for a large portion of patients with CF carrying 1 copy of F508del, the most frequent CF transmembrane conductance regulator (CFTR) mutation. Currently available disease-modifying CF drugs work by rescuing the function of the mutated CFTR anion channel. Recent research has shown that membrane lipids, and the cell lipidome in general, play a significant role in the mechanism of CFTR-defective trafficking and, on the other hand, its rescue. In this paper, by using untargeted lipidomics on CFBE41o- cells, we identified distinctive changes in the bronchial epithelial cell lipidome associated with treatment with Trikafta and other CF drugs. Particularly interesting was the reduction of levels of ceramide, a known molecular player in the induction of apoptosis, which appeared to be associated with a decrease in the susceptibility of cells to undergo apoptosis. This evidence could account for additional beneficial roles of the triple combination of drugs on CF phenotypes.


Assuntos
Aminofenóis/farmacologia , Benzodioxóis/farmacologia , Brônquios/citologia , Fibrose Cística/tratamento farmacológico , Células Epiteliais/metabolismo , Indóis/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Aminopiridinas/farmacologia , Brônquios/efeitos dos fármacos , Células Cultivadas , Ceramidas/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Combinação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Humanos , Lipidômica/métodos , Quinolonas/farmacologia , Espectrometria de Massas por Ionização por Electrospray
12.
J Med Chem ; 63(7): 3508-3521, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32196342

RESUMO

We previously reported a first set of hybrid topoisomerase II (topoII) poisons whose chemical core merges key pharmacophoric elements of etoposide and merbarone, which are two well-known topoII blockers. Here, we report on the expansion of this hybrid molecular scaffold and present 16 more hybrid derivatives that have been designed, synthesized, and characterized for their ability to block topoII and for their overall drug-like profile. Some of these compounds act as topoII poison and exhibit good solubility, metabolic (microsomal) stability, and promising cytotoxicity in three cancer cell lines (DU145, HeLa, A549). Compound 3f (ARN24139) is the most promising drug-like candidate, with a good pharmacokinetics profile in vivo. Our results indicate that this hybrid new chemical class of topoII poisons deserves further exploration and that 3f is a favorable lead candidate as a topoII poison, meriting future studies to test its efficacy in in vivo tumor models.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacocinética
13.
J Med Chem ; 63(7): 3634-3664, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32176488

RESUMO

Sphingolipids (SphLs) are a diverse class of molecules that are regulated by a complex network of enzymatic pathways. A disturbance in these pathways leads to lipid accumulation and initiation of several SphL-related disorders. Acid ceramidase is one of the key enzymes that regulate the metabolism of ceramides and glycosphingolipids, which are important members of the SphL family. Herein, we describe the lead optimization studies of benzoxazolone carboxamides resulting in piperidine 22m, where we demonstrated target engagement in two animal models of neuropathic lysosomal storage diseases (LSDs), Gaucher's and Krabbe's diseases. After daily intraperitoneal administration at 90 mg kg-1, 22m significantly reduced the brain levels of the toxic lipids glucosylsphingosine (GluSph) in 4L;C* mice and galactosylsphingosine (GalSph) in Twitcher mice. We believe that 22m is a lead molecule that can be further developed for the correction of severe neurological LSDs where GluSph or GalSph play a significant role in disease pathogenesis.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Benzoxazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Administração Oral , Animais , Benzoxazóis/administração & dosagem , Benzoxazóis/síntese química , Benzoxazóis/farmacocinética , Encéfalo/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Feminino , Doença de Gaucher/enzimologia , Doença de Gaucher/metabolismo , Humanos , Leucodistrofia de Células Globoides/enzimologia , Leucodistrofia de Células Globoides/metabolismo , Masculino , Camundongos , Estrutura Molecular , Psicosina/análogos & derivados , Psicosina/metabolismo , Relação Estrutura-Atividade
14.
Eur J Med Chem ; 189: 112047, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982652

RESUMO

The LIBRA compound library is a collection of 522 non-commercial molecules contributed by various Italian academic laboratories. These compounds have been designed and synthesized during different medicinal chemistry programs and are hosted by the Italian Institute of Technology. We report the screening of the LIBRA compound library against Trypanosoma brucei and Leishmania major pteridine reductase 1, TbPTR1 and LmPTR1. Nine compounds were active against parasitic PTR1 and were selected for cell-based parasite screening, as single agents and in combination with methotrexate (MTX). The most interesting TbPTR1 inhibitor identified was 4-(benzyloxy)pyrimidine-2,6-diamine (LIB_66). Subsequently, six new LIB_66 derivatives were synthesized to explore its Structure-Activity-Relationship (SAR) and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The results indicate that PTR1 has a preference to bind inhibitors, which resemble its biopterin/folic acid substrates, such as the 2,4-diaminopyrimidine derivatives.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Macrófagos/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Pirimidinas/química , Trypanosoma brucei brucei/enzimologia , Células A549 , Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Humanos , Metotrexato/farmacologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
15.
Eur J Med Chem ; 111: 138-59, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26866968

RESUMO

4-Cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate (3b) is a potent, selective and systemically active inhibitor of intracellular NAAA activity, which produces profound anti-inflammatory effects in animal models. In the present work, we describe structure-activity relationship (SAR) studies on 3-aminoazetidin-2-one derivatives, which have led to the identification of 3b, and expand these studies to elucidate the principal structural and stereochemical features needed to achieve effective NAAA inhibition. Investigations on the influence of the substitution at the ß-position of the 2-oxo-3-azetidinyl ring as well as on the effect of size and shape of the carbamic acid ester side chain led to the discovery of 3ak, a novel inhibitor of human NAAA that shows an improved physicochemical and drug-like profile relative to 3b. This favourable profile, along with the structural diversity of the carbamic acid chain of 3b, identify this compound as a promising new tool to investigate the potential of NAAA inhibitors as therapeutic agents for the treatment of pain and inflammation.


Assuntos
Amidoidrolases/antagonistas & inibidores , Carbamatos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ésteres/síntese química , Ésteres/farmacologia , beta-Lactamas/farmacologia , Amidoidrolases/metabolismo , Carbamatos/síntese química , Carbamatos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Ésteres/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , beta-Lactamas/síntese química , beta-Lactamas/química
16.
ACS Chem Neurosci ; 6(10): 1665-82, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26171616

RESUMO

One of the main obstacles toward the discovery of effective anti-Alzheimer drugs is the multifactorial nature of its etiopathology. Therefore, the use of multitarget-directed ligands has emerged as particularly suitable. Such ligands, able to modulate different neurodegenerative pathways, for example, amyloid and tau cascades, as well as cognitive and neurogenic functions, are fostered to come. In this respect, we report herein on the first class of BACE-1/GSK-3ß dual inhibitors based on a 3,4-dihydro-1,3,5-triazin-2(1H)-one skeleton, whose hit compound 1 showed interesting properties in a preliminary investigation. Notably, compound 2, endowed with well-balanced potencies against the two isolated enzymes (IC50 of 16 and 7 µM against BACE-1 and GSK-3ß, respectively), displayed effective neuroprotective and neurogenic activities and no neurotoxicity in cell-based assays. It also showed good brain permeability in a pharmacokinetic assessment in mice. Overall, triazinone derivatives, thanks to the simultaneous modulation of multiple points of the diseased network, might emerge as suitable candidates to be tested in in vivo Alzheimer's disease models.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Antipsicóticos/química , Antipsicóticos/farmacologia , Ácido Aspártico Endopeptidases/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Triazinas/uso terapêutico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Glioma/patologia , Glicogênio Sintase Quinase 3 beta , Humanos , Concentração Inibidora 50 , Lipopolissacarídeos/farmacologia , Camundongos , Neuroglia/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo , Triazinas/química , Triazinas/farmacologia , Tubulina (Proteína)/metabolismo
17.
ChemMedChem ; 9(2): 323-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24403170

RESUMO

N-Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator-activated receptor-α (PPAR-α). Compounds that feature an α-amino-ß-lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti-inflammatory effects that are mediated through FAE-dependent activation of PPAR-α. We synthesized and tested a series of racemic, diastereomerically pure ß-substituted α-amino-ß-lactones, as either carbamate or amide derivatives, investigating the structure-activity and structure-stability relationships (SAR and SSR) following changes in ß-substituent size, relative stereochemistry at the α- and ß-positions, and α-amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the ß-position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Lactonas/química , Lactonas/farmacologia , Amidoidrolases/metabolismo , Inibidores Enzimáticos/síntese química , Células HEK293 , Humanos , Lactonas/síntese química , Estereoisomerismo , Relação Estrutura-Atividade
18.
J Med Chem ; 55(20): 8807-26, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23043222

RESUMO

Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the nonsteroidal anti-inflammatory drug carprofen as a multitarget-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2, and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several derivatives of carprofen, sharing this multitarget activity. This may result in improved analgesic efficacy and reduced side effects (Naidu et al. J. Pharmacol. Exp. Ther.2009, 329, 48-56; Fowler, C. J.; et al. J. Enzyme Inhib. Med. Chem.2012, in press; Sasso et al. Pharmacol. Res.2012, 65, 553). The new compounds are among the most potent multitarget FAAH/COX inhibitors reported so far in the literature and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs.


Assuntos
Amidoidrolases/antagonistas & inibidores , Analgésicos/química , Anti-Inflamatórios não Esteroides/química , Carbazóis/química , Amidoidrolases/química , Analgésicos/síntese química , Anti-Inflamatórios não Esteroides/síntese química , Sítios de Ligação , Carbazóis/síntese química , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Técnicas Imunoenzimáticas , Simulação de Acoplamento Molecular , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA