Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Clin Med ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685612

RESUMO

Vacuolar ATPase (V-ATPase) is regarded as a possible target in cancer treatment. It is expressed in primary acute myeloid leukemia cells (AML), but the expression varies between patients and is highest for patients with a favorable prognosis after intensive chemotherapy. We therefore investigated the functional effects of two V-ATPase inhibitors (bafilomycin A1, concanamycin A) for primary AML cells derived from 80 consecutive patients. The V-ATPase inhibitors showed dose-dependent antiproliferative and proapoptotic effects that varied considerably between patients. A proteomic comparison of primary AML cells showing weak versus strong antiproliferative effects of V-ATPase inhibition showed a differential expression of proteins involved in intracellular transport/cytoskeleton functions, and an equivalent phosphoproteomic comparison showed a differential expression of proteins that regulate RNA processing/function together with increased activity of casein kinase 2. Patients with secondary AML, i.e., a heterogeneous subset with generally adverse prognosis and previous cytotoxic therapy, myeloproliferative neoplasia or myelodysplastic syndrome, were characterized by a strong antiproliferative effect of V-ATPase inhibition and also by a specific mRNA expression profile of V-ATPase interactome proteins. Furthermore, the V-ATPase inhibition altered the constitutive extracellular release of several soluble mediators (e.g., chemokines, interleukins, proteases, protease inhibitors), and increased mediator levels in the presence of AML-supporting bone marrow mesenchymal stem cells was then observed, especially for patients with secondary AML. Finally, animal studies suggested that the V-ATPase inhibitor bafilomycin had limited toxicity, even when combined with cytarabine. To conclude, V-ATPase inhibition has antileukemic effects in AML, but this effect varies between patients.

2.
BMC Nephrol ; 23(1): 118, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331167

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is associated with a significant risk of progression to kidney failure. Tubular atrophy is an established important risk factor for progressive disease, but few studies have investigated tubulointerstitial molecular markers and mechanisms of progression in IgAN. METHODS: Based on data from the Norwegian Renal Registry, two groups were included: IgAN patients with (n = 9) or without (n = 18) progression to kidney failure during 10 years of follow-up. Tubulointerstitial tissue without discernible interstitial expansion or pronounced tubular alterations was microdissected, proteome was analysed using tandem mass spectrometry and relative protein abundances were compared between groups. RESULTS: Proteome analyses quantified 2562 proteins with at least 2 unique peptides. Of these, 150 proteins had significantly different abundance between progressive and non-progressive IgAN patients, 67 were more abundant and 83 less abundant. Periostin was the protein with the highest fold change between progressive and non-progressive IgAN (fold change 8.75, p < 0.05) and periostin staining was also stronger in patients with progressive vs non-progressive IgAN. Reactome pathway analyses showed that proteins related to inflammation were more abundant and proteins involved in mitochondrial translation were significantly less abundant in progressive vs non-progressive patients. CONCLUSIONS: Microdissection of tubulointerstitial tissue with only mild damage allowed for identification of proteome markers of early progressive IgAN. Periostin abundance showed promise as a novel and important risk marker of progression.


Assuntos
Glomerulonefrite por IGA , Insuficiência Renal , Biomarcadores , Progressão da Doença , Feminino , Glomerulonefrite por IGA/complicações , Glomerulonefrite por IGA/diagnóstico , Humanos , Masculino , Prognóstico , Proteoma , Proteômica , Insuficiência Renal/complicações
3.
Neuro Oncol ; 24(4): 541-553, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543427

RESUMO

BACKGROUND: Microtubes (MTs), cytoplasmic extensions of glioma cells, are important cell communication structures promoting invasion and treatment resistance through network formation. MTs are abundant in chemoresistant gliomas, in particular, glioblastomas (GBMs), while they are uncommon in chemosensitive IDH-mutant and 1p/19q co-deleted oligodendrogliomas. The aim of this study was to identify potential signaling pathways involved in MT formation. METHODS: Bioinformatics analysis of TCGA was performed to analyze differences between GBM and oligodendroglioma. Patient-derived GBM stem cell lines were used to investigate MT formation under transforming growth factor-beta (TGF-ß) stimulation and inhibition in vitro and in vivo in an orthotopic xenograft model. RNA sequencing and proteomics were performed to detect commonalities and differences between GBM cell lines stimulated with TGF-ß. RESULTS: Analysis of TCGA data showed that the TGF-ß pathway is highly activated in GBMs compared to oligodendroglial tumors. We demonstrated that TGF-ß1 stimulation of GBM cell lines promotes enhanced MT formation and communication via calcium signaling. Inhibition of the TGF-ß pathway significantly reduced MT formation and its associated invasion in vitro and in vivo. Downstream of TGF-ß, we identified thrombospondin 1 (TSP1) as a potential mediator of MT formation in GBM through SMAD activation. TSP1 was upregulated upon TGF-ß stimulation and enhanced MT formation, which was inhibited by TSP1 shRNAs in vitro and in vivo. CONCLUSION: TGF-ß and its downstream mediator TSP1 are important mediators of the MT network in GBM and blocking this pathway could potentially help to break the complex MT-driven invasion/resistance network.


Assuntos
Glioblastoma , Glioma , Oligodendroglioma , Glioblastoma/patologia , Humanos , Trombospondina 1/genética , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
4.
Diseases ; 9(4)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34698165

RESUMO

Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy, and non-leukemic stromal cells (including mesenchymal stem cells, MSCs) are involved in leukemogenesis and show AML-supporting effects. We investigated how constitutive extracellular mediator release by primary human AML cells alters proteomic profiles of normal bone marrow MSCs. An average of 6814 proteins (range 6493-6918 proteins) were quantified for 41 MSC cultures supplemented with AML-cell conditioned medium, whereas an average of 6715 proteins (range 6703-6722) were quantified for untreated control MSCs. The AML effect on global MSC proteomic profiles varied between patients. Hierarchical clustering analysis identified 10 patients (5/10 secondary AML) showing more extensive AML-effects on the MSC proteome, whereas the other 31 patients clustered together with the untreated control MSCs and showed less extensive AML-induced effects. These two patient subsets differed especially with regard to MSC levels of extracellular matrix and mitochondrial/metabolic regulatory proteins. Less than 10% of MSC proteins were significantly altered by the exposure to AML-conditioned media; 301 proteins could only be quantified after exposure to conditioned medium and 201 additional proteins were significantly altered compared with the levels in control samples (153 increased, 48 decreased). The AML-modulated MSC proteins formed several interacting networks mainly reflecting intracellular organellar structure/trafficking but also extracellular matrix/cytokine signaling, and a single small network reflecting altered DNA replication. Our results suggest that targeting of intracellular trafficking and/or intercellular communication is a possible therapeutic strategy in AML.

5.
J Pers Med ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34442423

RESUMO

Autophagy is a highly conserved cellular degradation process that prevents cell damage and promotes cell survival, and clinical efforts have exploited autophagy inhibition as a therapeutic strategy in cancer. Chloroquine is a well-known antimalarial agent that inhibits late-stage autophagy. We evaluated the effects of chloroquine on cell viability and proliferation of acute myeloid leukemia acute myeloid leukemia (AML) cells derived from 81 AML patients. Our results show that chloroquine decreased AML cell viability and proliferation for the majority of patients. Furthermore, a subgroup of AML patients showed a greater susceptibility to chloroquine, and using hierarchical cluster analysis, we identified 99 genes upregulated in this patient subgroup, including several genes related to leukemogenesis. The combination of chloroquine with low-dose cytarabine had an additive inhibitory effect on AML cell proliferation. Finally, a minority of patients showed increased extracellular constitutive mediator release in the presence of chloroquine, which was associated with strong antiproliferative effects of chloroquine as well as cytarabine. We conclude that chloroquine has antileukemic activity and should be further explored as a therapeutic drug against AML in combination with other cytotoxic or metabolic drugs; however, due to the patient heterogeneity, chloroquine therapy will probably be effective only for selected patients.

6.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073480

RESUMO

Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, and therapeutic targeting of these cells is considered both for malignant and non-malignant diseases. We analyzed global proteomic profiles for osteoblasts derived from ten and MSCs from six healthy individuals, and we quantified 5465 proteins for the osteoblasts and 5420 proteins for the MSCs. There was a large overlap in the profiles for the two cell types; 156 proteins were quantified only in osteoblasts and 111 proteins only for the MSCs. The osteoblast-specific proteins included several extracellular matrix proteins and a network including 27 proteins that influence intracellular signaling (Wnt/Notch/Bone morphogenic protein pathways) and bone mineralization. The osteoblasts and MSCs showed only minor age- and sex-dependent proteomic differences. Finally, the osteoblast and MSC proteomic profiles were altered by ex vivo culture in serum-free media. We conclude that although the proteomic profiles of osteoblasts and MSCs show many similarities, we identified several osteoblast-specific extracellular matrix proteins and an osteoblast-specific intracellular signaling network. Therapeutic targeting of these proteins will possibly have minor effects on MSCs. Furthermore, the use of ex vivo cultured osteoblasts/MSCs in clinical medicine will require careful standardization of the ex vivo handling of the cells.


Assuntos
Células da Medula Óssea/metabolismo , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteômica , Via de Sinalização Wnt , Idoso , Células da Medula Óssea/citologia , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Osteoblastos/citologia
7.
Cancers (Basel) ; 13(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946813

RESUMO

All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells. Before starting the combined treatment, AML responders showed increased levels of several proteins, especially those involved in neutrophil degranulation/differentiation, M phase regulation and the interconversion of nucleotide di- and triphosphates (i.e., DNA synthesis and binding). Several among the differentially regulated phosphorylation sites reflected differences in the regulation of RNA metabolism and apoptotic events at the same time point. These effects were mainly caused by increased cyclin dependent kinase 1 and 2 (CDK1/2), LIM domain kinase 1 and 2 (LIMK1/2), mitogen-activated protein kinase 7 (MAPK7) and protein kinase C delta (PRKCD) activity in responder cells. An extensive effect of in vivo treatment with ATRA/VP was the altered level and phosphorylation of proteins involved in the regulation of transcription/translation/RNA metabolism, especially in non-responders, but the regulation of cell metabolism, immune system and cytoskeletal functions were also affected. Our analysis of serial samples during the first week of treatment suggest that proteomic and phosphoproteomic profiling can be used for the early identification of responders to ATRA/VP-based treatment.

8.
Cancers (Basel) ; 13(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806032

RESUMO

Extracellular protein release is important both for the formation of extracellular matrix and for communication between cells. We investigated the extracellular protein release by in vitro cultured normal mesenchymal stem cells (MSCs) and by primary human acute myeloid leukemia (AML) cells derived from 40 consecutive patients. We observed quantifiable levels of 3082 proteins in our study; for the MSCs, we detected 1446 proteins, whereas the number of released proteins for the AML cells showed wide variation between patients (average number 1699, range 557-2380). The proteins were derived from various cellular compartments (e.g., cell membrane, nucleus, and cytoplasms), several organelles (e.g., cytoskeleton, endoplasmatic reticulum, Golgi apparatus, and mitochondria) and had various functions (e.g., extracellular matrix and exosomal proteins, cytokines, soluble adhesion molecules, protein synthesis, post-transcriptional modulation, RNA binding, and ribonuclear proteins). Thus, AML patients were very heterogeneous both regarding the number of proteins and the nature of their extracellularly released proteins. The protein release profiles of MSCs and primary AML cells show a considerable overlap, but a minority of the proteins are released only or mainly by the MSC, including several extracellular matrix molecules. Taken together, our observations suggest that the protein profile of the extracellular bone marrow microenvironment differs between AML patients, these differences are mainly caused by the protein release by the leukemic cells but this leukemia-associated heterogeneity of the overall extracellular protein profile is modulated by the constitutive protein release by normal MSCs.

9.
Sci Rep ; 11(1): 7174, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785790

RESUMO

Two pathophysiological different experimental models for multiple sclerosis were analyzed in parallel using quantitative proteomics in attempts to discover protein alterations applicable as diagnostic-, prognostic-, or treatment targets in human disease. The cuprizone model reflects de- and remyelination in multiple sclerosis, and the experimental autoimmune encephalomyelitis (EAE, MOG1-125) immune-mediated events. The frontal cortex, peripheral to severely inflicted areas in the CNS, was dissected and analyzed. The frontal cortex had previously not been characterized by proteomics at different disease stages, and novel protein alterations involved in protecting healthy tissue and assisting repair of inflicted areas might be discovered. Using TMT-labelling and mass spectrometry, 1871 of the proteins quantified overlapped between the two experimental models, and the fold change compared to controls was verified using label-free proteomics. Few similarities in frontal cortex between the two disease models were observed when regulated proteins and signaling pathways were compared. Legumain and C1Q complement proteins were among the most upregulated proteins in cuprizone and hemopexin in the EAE model. Immunohistochemistry showed that legumain expression in post-mortem multiple sclerosis brain tissue (n = 19) was significantly higher in the center and at the edge of white matter active and chronic active lesions. Legumain was associated with increased lesion activity and might be valuable as a drug target using specific inhibitors as already suggested for Parkinson's and Alzheimer's disease. Cerebrospinal fluid levels of legumain, C1q and hemopexin were not significantly different between multiple sclerosis patients, other neurological diseases, or healthy controls.


Assuntos
Encefalomielite Autoimune Experimental/diagnóstico , Lobo Frontal/patologia , Esclerose Múltipla/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Complemento C1q/análise , Complemento C1q/metabolismo , Cuprizona/administração & dosagem , Cuprizona/toxicidade , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/metabolismo , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/imunologia , Regulação da Expressão Gênica/imunologia , Hemopexina/análise , Hemopexina/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Proteômica , Adulto Jovem
10.
Cancers (Basel) ; 13(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379263

RESUMO

Mesenchymal stem cells (MSCs) and osteoblasts are bone marrow stromal cells that contribute to the formation of stem cell niches and support normal hematopoiesis, leukemogenesis and development of metastases from distant cancers. This support is mediated through cell-cell contact, release of soluble mediators and formation of extracellular matrix. By using a proteomic approach, we characterized the protein release by in vitro cultured human MSCs (10 donors) and osteoblasts (nine donors). We identified 1379 molecules released by these cells, including 340 proteins belonging to the GO-term Extracellular matrix. Both cell types released a wide range of functionally heterogeneous proteins including extracellular matrix molecules (especially collagens), several enzymes and especially proteases, cytokines and soluble adhesion molecules, but also several intracellular molecules including chaperones, cytoplasmic mediators, histones and non-histone nuclear molecules. The levels of most proteins did not differ between MSCs and osteoblasts, but 82 proteins were more abundant for MSC (especially extracellular matrix proteins and proteases) and 36 proteins more abundant for osteoblasts. Finally, a large number of exosomal proteins were identified. To conclude, MSCs and osteoblasts show extracellular release of a wide range of functionally diverse proteins, including several extracellular matrix molecules known to support cancer progression (e.g., metastases from distant tumors, increased relapse risk for hematological malignancies), and the large number of identified exosomal proteins suggests that exocytosis is an important mechanism of protein release.

11.
Aging (Albany NY) ; 12(24): 24734-24777, 2020 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-33349623

RESUMO

Patients with acute myeloid leukemia (AML) have a median age of 65-70 years at diagnosis. Elderly patients have more chemoresistant disease, and this is partly due to decreased frequencies of favorable and increased frequencies of adverse genetic abnormalities. However, aging-dependent differences may also contribute. We therefore compared AML cell proteomic and phosphoproteomic profiles for (i) elderly low-risk and younger low-risk patients with favorable genetic abnormalities; and (ii) high-risk patients with adverse genetic abnormalities and a higher median age against all low-risk patients with lower median age. Elderly low-risk and younger low-risk patients showed mainly phosphoproteomic differences especially involving transcriptional regulators and cytoskeleton. When comparing high-risk and low-risk patients both proteomic and phosphoproteomic studies showed differences involving cytoskeleton and immunoregulation but also transcriptional regulation and cell division. The age-associated prognostic impact of cyclin-dependent kinases was dependent on the cellular context. The protein level of the adverse prognostic biomarker mitochondrial aldehyde dehydrogenase (ALDH2) showed a similar significant upregulation both in elderly low-risk and elderly high-risk patients. Our results suggest that molecular mechanisms associated with cellular aging influence chemoresistance of AML cells, and especially the cytoskeleton function may then influence cellular hallmarks of aging, e.g. mitosis, polarity, intracellular transport and adhesion.


Assuntos
Envelhecimento/genética , Aldeído-Desidrogenase Mitocondrial/genética , Citoesqueleto/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo , Adesão Celular/genética , Polaridade Celular , Senescência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Mitose/genética , Fosfoproteínas , Prognóstico , Proteômica , Fatores de Risco , Regulação para Cima
12.
Cancers (Basel) ; 12(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512867

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Nearly 50% of the patients who receive the most intensive treatment develop chemoresistant leukemia relapse. Although the leukemogenic events leading to relapse seem to differ between patients (i.e., regrowth from a clone detected at first diagnosis, progression from the original leukemic or preleukemic stem cells), a common characteristic of relapsed AML is increased chemoresistance. The aim of the present study was to investigate at the proteomic level whether leukemic cells from relapsed patients present overlapping molecular mechanisms that contribute to this chemoresistance. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare the proteomic and phosphoproteomic profiles of AML cells derived from seven patients at the time of first diagnosis and at first relapse. At the time of first relapse, AML cells were characterized by increased levels of proteins important for various mitochondrial functions, such as mitochondrial ribosomal subunit proteins (MRPL21, MRPS37) and proteins for RNA processing (DHX37, RNA helicase; RPP40, ribonuclease P component), DNA repair (ERCC3, DNA repair factor IIH helicase; GTF2F1, general transcription factor), and cyclin-dependent kinase (CDK) activity. The levels of several cytoskeletal proteins (MYH14/MYL6/MYL12A, myosin chains; VCL, vinculin) as well as of proteins involved in vesicular trafficking/secretion and cell adhesion (ITGAX, integrin alpha-X; CD36, platelet glycoprotein 4; SLC2A3, solute carrier family 2) were decreased in relapsed cells. Our study introduces new targetable proteins that might direct therapeutic strategies to decrease chemoresistance in relapsed AML.

13.
Cancers (Basel) ; 12(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192169

RESUMO

Acute myeloid leukemia (AML) is a hematological cancer that mainly affects the elderly. Although complete remission (CR) is achieved for the majority of the patients after induction and consolidation therapies, nearly two-thirds relapse within a short interval. Understanding biological factors that determine relapse has become of major clinical interest in AML. We utilized liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify the protein changes and protein phosphorylation events associated with AML relapse in primary cells from 41 AML patients at time of diagnosis. Patients were defined as relapse-free if they had not relapsed within a five-year clinical follow-up after AML diagnosis. Relapse was associated with increased expression of RNA processing proteins and decreased expression of V-ATPase proteins. We also observed an increase in phosphorylation events catalyzed by cyclin-dependent kinases (CDKs) and casein kinase 2 (CSK2). The biological relevance of the proteome findings was supported by cell proliferation assays using inhibitors of V-ATPase (bafilomycin), CSK2 (CX-4945), CDK4/6 (abemaciclib) and CDK2/7/9 (SNS-032). While bafilomycin preferentially inhibited the cells from relapse patients, the kinase inhibitors were less efficient in these cells. This suggests that therapy against the upregulated kinases could also target the factors inducing their upregulation rather than their activity. This study, therefore, presents markers that could help predict AML relapse and direct therapeutic strategies.

14.
BMC Nephrol ; 20(1): 410, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31726998

RESUMO

BACKGROUND: IgA nephropathy (IgAN) involves mesangial matrix expansion, but the proteomic composition of this matrix is unknown. The present study aimed to characterize changes in extracellular matrix in IgAN. METHODS: In the present study we used mass spectrometry-based proteomics in order to quantitatively compare protein abundance between glomeruli of patients with IgAN (n = 25) and controls with normal biopsy findings (n = 15). RESULTS: Using a previously published paper by Lennon et al. and cross-referencing with the Matrisome database we identified 179 extracellular matrix proteins. In the comparison between IgAN and controls, IgAN glomeruli showed significantly higher abundance of extracellular matrix structural proteins (e.g periostin, vitronectin, and extracellular matrix protein 1) and extracellular matrix associated proteins (e.g. azurocidin, myeloperoxidase, neutrophil elastase, matrix metalloproteinase-9 and matrix metalloproteinase 2). Periostin (fold change 3.3) and azurocidin (3.0) had the strongest fold change between IgAN and controls; periostin was also higher in IgAN patients who progressed to ESRD as compared to patients who did not. CONCLUSION: IgAN is associated with widespread changes of the glomerular extracellular matrix proteome. Proteins important in glomerular sclerosis or inflammation seem to be most strongly increased and periostin might be an important marker of glomerular damage in IgAN.


Assuntos
Proteínas da Matriz Extracelular/análise , Matriz Extracelular/química , Glomerulonefrite por IGA , Glomérulos Renais/química , Proteômica/métodos , Adulto , Estudos de Casos e Controles , Moléculas de Adesão Celular/análise , Feminino , Membrana Basal Glomerular/química , Taxa de Filtração Glomerular , Glomerulonefrite por IGA/fisiopatologia , Humanos , Rim/química , Glomérulos Renais/cirurgia , Microdissecção e Captura a Laser , Masculino , Espectrometria de Massas em Tandem
15.
Methods Mol Biol ; 2044: 377-391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432427

RESUMO

Every year, a large number of published studies present biomarkers for various neurological disorders. Many of these studies are based on mass spectrometry proteomics data and describe comparison of the abundance of proteins in cerebrospinal fluid between two or more disease groups. As the number of such studies is growing, it is no longer straightforward to obtain an overview of which specific proteins are increased or decreased between the numerous relevant diseases and their many subcategories, or to see the larger picture or trends between related diseases. To alleviate this situation, we therefore mined the literature for mass spectrometry-based proteomics studies including quantitative protein data from cerebrospinal fluid of patients with multiple sclerosis, Alzheimer's disease, and Parkinson's disease and organized the extracted data in the Cerebrospinal Fluid Proteome Resource (CSF-PR). CSF-PR is freely available online at http://probe.uib.no/csf-pr , is highly interactive, and allows for easy navigation, visualization, and export of the published scientific data. This chapter will guide the user through some of the most important features of the tool and show examples of the suggested use cases.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano/metabolismo , Esclerose Múltipla/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , Proteoma/análise , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/química , Biomarcadores/metabolismo , Proteínas do Líquido Cefalorraquidiano/química , Mineração de Dados , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas , Peptídeos/química , Proteoma/química , Proteoma/metabolismo , Proteômica
16.
Artigo em Inglês | MEDLINE | ID: mdl-31240133

RESUMO

The phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway is constitutively activated in human acute myeloid leukemia (AML) cells and is regarded as a possible therapeutic target. Insulin is an agonist of this pathway and a growth factor for AML cells. We characterized the effect of insulin on the phosphorylation of 10 mediators in the main track of the PI3K-Akt-mTOR pathway in AML cells from 76 consecutive patients. The overall results showed that insulin significantly increased the phosphorylation of all investigated mediators. However, insulin effects on the pathway activation profile varied among patients, and increased phosphorylation in all mediators was observed only in a minority of patients; in other patients, insulin had divergent effects. Global gene expression profiling and proteomic/phosphoproteomic comparisons suggested that AML cells from these two patient subsets differed with regard to AML cell differentiation, transcriptional regulation, RNA metabolism, and cellular metabolism. Strong insulin-induced phosphorylation was associated with weakened antiproliferative effects of metabolic inhibitors. PI3K, Akt, and mTOR inhibitors also caused divergent effects on the overall pathway phosphorylation profile in the presence of insulin, although PI3K and Akt inhibition caused a general reduction in Akt pT308 and 4EBP1 pT36/pT45 phosphorylation. For Akt inhibition, the phosphorylation of upstream mediators was generally increased or unaltered. In contrast, mTOR inhibition reduced mTOR pS2448 and S6 pS244 phosphorylation but increased Akt pT308 phosphorylation. In conclusion, the effects of both insulin and PI3K-Akt-mTOR inhibitors differ between AML patient subsets, and differences in insulin responsiveness are associated with differential susceptibility to metabolic targeting.

17.
Curr Med Chem ; 26(28): 5317-5337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31241430

RESUMO

BACKGROUND: Post-translational modification (PTM) crosstalk is a young research field. However, there is now evidence of the extraordinary characterization of the different proteoforms and their interactions in a biological environment that PTM crosstalk studies can describe. Besides gene expression and phosphorylation profiling of acute myeloid leukemia (AML) samples, the functional combination of several PTMs that might contribute to a better understanding of the complexity of the AML proteome remains to be discovered. OBJECTIVE: By reviewing current workflows for the simultaneous enrichment of several PTMs and bioinformatics tools to analyze mass spectrometry (MS)-based data, our major objective is to introduce the PTM crosstalk field to the AML research community. RESULTS: After an introduction to PTMs and PTM crosstalk, this review introduces several protocols for the simultaneous enrichment of PTMs. Two of them allow a simultaneous enrichment of at least three PTMs when using 0.5-2 mg of cell lysate. We have reviewed many of the bioinformatics tools used for PTM crosstalk discovery as its complex data analysis, mainly generated from MS, becomes challenging for most AML researchers. We have presented several non-AML PTM crosstalk studies throughout the review in order to show how important the characterization of PTM crosstalk becomes for the selection of disease biomarkers and therapeutic targets. CONCLUSION: Herein, we have reviewed the advances and pitfalls of the emerging PTM crosstalk field and its potential contribution to unravel the heterogeneity of AML. The complexity of sample preparation and bioinformatics workflows demands a good interaction between experts of several areas.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
18.
Eur J Mass Spectrom (Chichester) ; 25(6): 451-456, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31189351

RESUMO

Single amino acids and small endogenous peptides play important roles in maintaining a properly functioning organism. These molecules are however currently only routinely identified in targeted approaches. In a small proof-of-concept mass spectrometry experiment, we found that by combining isobaric tags and peptidomics, and by targeting singly charged molecules, we were able to identify a significant amount of single amino acids and small endogenous peptides using a basic mass-based identification approach. While there is still room for improvement, our simple test indicates that a limited amount of extra work when setting up the mass spectrometry experiment could potentially lead to a wealth of additional information.


Assuntos
Aminoácidos/química , Peptídeos/química , Espectrometria de Massas , Proteômica
19.
Atten Defic Hyperact Disord ; 11(1): 91-105, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927234

RESUMO

Na+/H+ Exchanger 9 (NHE9) is an endosomal membrane protein encoded by the Solute Carrier 9A, member 9 gene (SLC9A9). SLC9A9 has been implicated in attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), epilepsy, multiple sclerosis and cancers. To better understand the function of NHE9 and the effects of disease-associated variants on protein-protein interactions, we conducted a quantitative analysis of the NHE9 interactome using co-immunoprecipitation and isobaric labeling-based quantitative mass spectrometry. We identified 100 proteins that interact with NHE9. These proteins were enriched in known functional pathways for NHE9: the endocytosis, protein ubiquitination and phagosome pathways, as well as some novel pathways including oxidative stress, mitochondrial dysfunction, mTOR signaling, cell death and RNA processing pathways. An ADHD-associated mutation (A409P) significantly altered NHE9's interactions with a subset of proteins involved in caveolae-mediated endocytosis and MAP2K2-mediated downstream signaling. An ASD nonsense mutation in SLC9A9, R423X, produced no-detectable amount of NHE9, suggesting the overall loss of NHE9 functional networks. In addition, seven of the NHE9 interactors are products of known autism candidate genes (Simons Foundation Autism Research Initiative, SFARI Gene) and 90% of the NHE9 interactome overlap with SFARI protein interaction network PIN (p < 0.0001), supporting the role of NHE9 interactome in ASDs molecular mechanisms. Our results provide a detailed understanding of the functions of protein NHE9 and its disrupted interactions, possibly underlying ADHD and ASDs. Furthermore, our methodological framework proved useful for functional characterization of disease-associated genetic variants and suggestion of druggable targets.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Mutação , Mapas de Interação de Proteínas/genética , Trocadores de Sódio-Hidrogênio/genética , Humanos
20.
Cancers (Basel) ; 11(1)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634713

RESUMO

Acute myeloid leukemia (AML) is an aggressive malignancy, which is highly heterogeneous with regard to chemosensitivity and biological features. The AML cell population is organized in a hierarchy that is reflected in the in vitro growth characteristics, with only a minority of cells being able to proliferate for more than two weeks. In this study, we investigated the ability of AML stem cells to survive and proliferate in suspension cultures in the presence of exogenous mediators but without supporting non-leukemic cells. We saw that a high number of maintained stem cells (i.e., a large number of clonogenic cells after five weeks of culture) was associated with decreased overall survival for patients receiving intensive chemotherapy; this prognostic impact was also detected in the multivariate/adjusted analysis. Furthermore, the patients with many clonogenic cells presented more frequently with mutations in transcription-related genes, and also showed a higher abundance of proteins involved in transcription at the time of diagnosis. In conclusion, the growth characteristics of the long-term proliferating leukemic stem cells seem to have an independent prognostic impact in human AML, and these characteristics appear to be reflected by the mutational landscape and the proteome of the patients at the time of diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA