Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1233-1243, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658211

RESUMO

Oxidative stress has been linked with lead toxicity, including lead-induced sexual dysfunction. On the contrary, sodium acetate has been proven to exert antioxidant activity. However, the effect of sodium acetate on lead-induced sexual dysfunction has not been fully explored. This study investigated the effect of sodium acetate on lead-induced sexual dysfunction, exploring the involvement of testosterone, eNOS/NO/cGMP, and Nrf2/HO-1 signaling. Twenty male Wistar rats with similar weights were randomly assigned into four groups (n = 5 rats/group) after two weeks of acclimatization. Animals were vehicle-treated (0.5 ml/day of distilled water, per os), acetate-treated (200 mg/kg/day, per os), lead-treated (20 mg/kg/day, per os), or lead + acetate-treated. The results revealed that sodium acetate treatment attenuated lead-induced rise in penile lead, malondialdehyde and oxidized glutathione concentrations, and acetylcholinesterase activity. In addition, lead exposure prolonged mount, intromission, and ejaculation latency and reduced mount, intromission, and ejaculation frequency, as well as the motivation to mate and penile reflex, which were improved by acetate treatment. More so, acetate treatment ameliorated lead-induced reductions in absolute and relative penile weight, eNOS, NO, cGMP, luteinizing hormone, follicle-stimulating hormone, testosterone, dopamine, Nrf2, HO-1, and reduced glutathione concentrations, as well as glutathione reductase, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, and catalase activities. In conclusion, this study demonstrates that sodium acetate attenuated lead-induced sexual dysfunction by upregulating testosterone-dependent eNOS/NO/cGMP and Nrf2/HO-1 signaling. Despite the compelling data presented in this study, other possible associated mechanisms in the protective role of acetate should be explored.


Assuntos
Chumbo , Testosterona , Ratos , Masculino , Animais , Ratos Wistar , Chumbo/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Acetato de Sódio/farmacologia , Acetilcolinesterase , Antioxidantes/farmacologia , Estresse Oxidativo
2.
Aging Male ; 26(1): 2224428, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37351853

RESUMO

AIM: This study evaluated the effect of lead, with or without zinc co-administration, on steroidogenic and xanthine oxidase (XO)/uric acid (UA)/caspase 3-mediated apoptotic signaling in the testis. MATERIALS AND METHODS: Forty male Wistar rats were divided into four groups at random; vehicle-treated control, zinc-treated, lead-treated, and lead + zinc-treated groups. RESULTS: Lead exposure significantly lowered overall weight gain, testicular, epididymal, seminal vesicle, and prostate weights. Also, lead decreased sperm count, viability and motility but increased the fraction of sperm with aberrant morphology. In addition, lead caused a marked rise in the level of UA and XO activity but a decrease in nuclear factor erythroid 2-related factor 2 (Nrf2), reduced glutathione (GSH) as well as total antioxidant capacity (TAC) levels, and superoxide dismutase (SOD) and catalase activities. Furthermore, lead increased the testicular levels of nuclear factor kappa B (NFkB), interleukin-1beta (IL-1ß), and tumour necrotic factor-alpha (TNF-α), which were associated with an increase in testicular caspase 3 activity and DNA fragmentation as well as a decline in circulating gonadotropin releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, and testicular 3ß-hydroxysteroid dehydrogenase (3ß-HSD) and 17ß-hydroxysteroid dehydrogenase (17ß-HSD). These were associated with lead-induced degenerative changes in testicular tissues evidenced by shrunken seminiferous tubules, degeneration and sloughing of germ cells. Co-administration of zinc prevented lead-induced testicular injury by ameliorating oxidative stress, apoptosis, and inflammation through downregulation of XO/UA/caspase 3 pathway and upregulation of testicular 3ß-HSD/17ß-HSD. CONCLUSION: This study demonstrated that zinc protected against lead-induced testicular toxicity via the downregulation of XO/UA/caspase 3 signaling.


Assuntos
Testículo , Ácido Úrico , Ratos , Animais , Masculino , Testículo/patologia , Ratos Wistar , Xantina Oxidase/metabolismo , Xantina Oxidase/farmacologia , Zinco/metabolismo , Zinco/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Sêmen/metabolismo , Testosterona/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA