Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 98(3): 630-644, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32446934

RESUMO

Kidney function and blood pressure homeostasis are regulated by purinergic signaling mechanisms. These autocrine/paracrine signaling pathways are initiated by the release of cellular ATP, which influences kidney hemodynamics and steady-state renin secretion from juxtaglomerular cells. However, the mechanism responsible for ATP release that supports tonic inputs to juxtaglomerular cells and regulates renin secretion remains unclear. Pannexin 1 (Panx1) channels localize to both afferent arterioles and juxtaglomerular cells and provide a transmembrane conduit for ATP release and ion permeability in the kidney and the vasculature. We hypothesized that Panx1 channels in renin-expressing cells regulate renin secretion in vivo. Using a renin cell-specific Panx1 knockout model, we found that male Panx1 deficient mice exhibiting a heightened activation of the renin-angiotensin-aldosterone system have markedly increased plasma renin and aldosterone concentrations, and elevated mean arterial pressure with altered peripheral hemodynamics. Following ovariectomy, female mice mirrored the male phenotype. Furthermore, constitutive Panx1 channel activity was observed in As4.1 renin-secreting cells, whereby Panx1 knockdown reduced extracellular ATP accumulation, lowered basal intracellular calcium concentrations and recapitulated a hyper-secretory renin phenotype. Moreover, in response to stress stimuli that lower blood pressure, Panx1-deficient mice exhibited aberrant "renin recruitment" as evidenced by reactivation of renin expression in pre-glomerular arteriolar smooth muscle cells. Thus, renin-cell Panx1 channels suppress renin secretion and influence adaptive renin responses when blood pressure homeostasis is threatened.


Assuntos
Conexinas , Renina , Trifosfato de Adenosina , Animais , Pressão Sanguínea , Conexinas/genética , Feminino , Homeostase , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética
2.
J Immunol ; 204(11): 2995-3007, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312847

RESUMO

The proinflammatory cytokine IL-1ß is a significant risk factor in cardiovascular disease that can be targeted to reduce major cardiovascular events. IL-1ß expression and release are tightly controlled by changes in intracellular Ca2+ ([Ca2+]i), which has been associated with ATP release and purinergic signaling. Despite this, the mechanisms that regulate these changes have not been identified. The pannexin 1 (Panx1) channels have canonically been implicated in ATP release, especially during inflammation. We examined Panx1 in human umbilical vein endothelial cells following treatment with the proinflammatory cytokine TNF-α. Analysis by whole transcriptome sequencing and immunoblot identified a dramatic increase in Panx1 mRNA and protein expression that is regulated in an NF-κB-dependent manner. Furthermore, genetic inhibition of Panx1 reduced the expression and release of IL-1ß. We initially hypothesized that increased Panx1-mediated ATP release acted in a paracrine fashion to control cytokine expression. However, our data demonstrate that IL-1ß expression was not altered after direct ATP stimulation in human umbilical vein endothelial cells. Because Panx1 forms a large pore channel, we hypothesized it may permit Ca2+ diffusion into the cell to regulate IL-1ß. High-throughput flow cytometric analysis demonstrated that TNF-α treatments lead to elevated [Ca2+]i, corresponding with Panx1 membrane localization. Genetic or pharmacological inhibition of Panx1 reduced TNF-α-associated increases in [Ca2+]i, blocked phosphorylation of the NF-κB-p65 protein, and reduced IL-1ß transcription. Taken together, the data in our study provide the first evidence, to our knowledge, that [Ca2+]i regulation via the Panx1 channel induces a feed-forward effect on NF-κB to regulate IL-1ß synthesis and release in endothelium during inflammation.


Assuntos
Conexinas/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Conexinas/genética , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-1beta/metabolismo , Espaço Intracelular , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Sequenciamento do Exoma
3.
Circ Res ; 126(2): 232-242, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31801409

RESUMO

RATIONALE: Increasing prevalence of obesity and its associated risk with cardiovascular diseases demands a better understanding of the contribution of different cell types within this complex disease for developing new treatment options. Previous studies could prove a fundamental role of FTO (fat mass and obesity-associated protein) within obesity; however, its functional role within different cell types is less understood. OBJECTIVES: We identify endothelial FTO as a previously unknown central regulator of both obesity-induced metabolic and vascular alterations. METHODS AND RESULTS: We generated endothelial Fto-deficient mice and analyzed the impact of obesity on those mice. While the loss of endothelial FTO did not influence the development of obesity and dyslipidemia, it protected mice from high-fat diet-induced glucose intolerance and insulin resistance by increasing AKT (protein kinase B) phosphorylation in endothelial cells and skeletal muscle. Furthermore, loss of endothelial FTO prevented the development of obesity-induced hypertension by preserving myogenic tone in resistance arteries. In Fto-deficient arteries, microarray analysis identified upregulation of L-Pgds with significant increases in prostaglandin D2 levels. Blockade of prostaglandin D2 synthesis inhibited the myogenic tone protection in resistance arteries of endothelial Fto-deficient mice on high-fat diet; conversely, direct addition of prostaglandin D2 rescued myogenic tone in high-fat diet-fed control mice. Myogenic tone was increased in obese human arteries with FTO inhibitors or prostaglandin D2 application. CONCLUSIONS: These data identify endothelial FTO as a previously unknown regulator in the development of obesity-induced metabolic and vascular changes, which is independent of its known function in regulation of obesity.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Endotélio Vascular/metabolismo , Obesidade/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Artérias/metabolismo , Artérias/patologia , Endotélio Vascular/patologia , Humanos , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Masculino , Camundongos , Tono Muscular , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/patologia , Prostaglandina D2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
J Biol Chem ; 294(17): 6940-6956, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30814251

RESUMO

Pannexin 1 (PANX1)-mediated ATP release in vascular smooth muscle coordinates α1-adrenergic receptor (α1-AR) vasoconstriction and blood pressure homeostasis. We recently identified amino acids 198-200 (YLK) on the PANX1 intracellular loop that are critical for α1-AR-mediated vasoconstriction and PANX1 channel function. We report herein that the YLK motif is contained within an SRC homology 2 domain and is directly phosphorylated by SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) at Tyr198 We demonstrate that PANX1-mediated ATP release occurs independently of intracellular calcium but is sensitive to SRC family kinase (SFK) inhibition, suggestive of channel regulation by tyrosine phosphorylation. Using a PANX1 Tyr198-specific antibody, SFK inhibitors, SRC knockdown, temperature-dependent SRC cells, and kinase assays, we found that PANX1-mediated ATP release and vasoconstriction involves constitutive phosphorylation of PANX1 Tyr198 by SRC. We specifically detected SRC-mediated Tyr198 phosphorylation at the plasma membrane and observed that it is not enhanced or induced by α1-AR activation. Last, we show that PANX1 immunostaining is enriched in the smooth muscle layer of arteries from hypertensive humans and that Tyr198 phosphorylation is detectable in these samples, indicative of a role for membrane-associated PANX1 in small arteries of hypertensive humans. Our discovery adds insight into the regulation of PANX1 by post-translational modifications and connects a significant purinergic vasoconstriction pathway with a previously identified, yet unexplored, tyrosine kinase-based α1-AR constriction mechanism. This work implicates SRC-mediated PANX1 function in normal vascular hemodynamics and suggests that Tyr198-phosphorylated PANX1 is involved in hypertensive vascular pathology.


Assuntos
Tirosina/metabolismo , Quinases da Família src/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Conexinas/efeitos dos fármacos , Conexinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Fenilefrina/farmacologia , Fosforilação , Proto-Oncogene Mas , Quinases da Família src/química
5.
Arterioscler Thromb Vasc Biol ; 38(9): 2065-2078, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026274

RESUMO

Objective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis.


Assuntos
Pressão Sanguínea/fisiologia , Caveolina 1/metabolismo , Conexinas/metabolismo , Homeostase , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Trifosfato de Adenosina/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Masculino , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/inervação , Fenilefrina/farmacologia , Sistema Nervoso Simpático/fisiologia , Vasoconstrição/fisiologia
6.
Nat Commun ; 6: 7965, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26242575

RESUMO

Inflammatory cell recruitment to local sites of tissue injury and/or infection is controlled by a plethora of signalling processes influencing cell-to-cell interactions between the vascular endothelial cells (ECs) in post-capillary venules and circulating leukocytes. Recently, ATP-sensitive P2Y purinergic receptors have emerged as downstream regulators of EC activation in vascular inflammation. However, the mechanism(s) regulating cellular ATP release in this response remains elusive. Here we report that the ATP-release channel Pannexin1 (Panx1) opens downstream of EC activation by TNF-α. This process involves activation of type-1 TNF receptors, recruitment of Src family kinases (SFK) and SFK-dependent phosphorylation of Panx1. Using an inducible, EC-specific Panx1 knockout mouse line, we report a previously unidentified role for Panx1 channels in promoting leukocyte adhesion and emigration through the venous wall during acute systemic inflammation, placing Panx1 channels at the centre of cytokine crosstalk with purinergic signalling in the endothelium.


Assuntos
Conexinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Leucócitos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Migração Transendotelial e Transepitelial , Trifosfato de Adenosina/metabolismo , Animais , Adesão Celular , Células Cultivadas , Endotélio Vascular/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Vênulas/imunologia , Quinases da Família src/metabolismo
7.
Sci Signal ; 8(364): ra17, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25690012

RESUMO

Both purinergic signaling through nucleotides such as ATP (adenosine 5'-triphosphate) and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the α1 adrenoreceptor (α1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1. Analysis of the Panx1-deficient mice showed that Panx1 contributed to blood pressure regulation especially during the night cycle when sympathetic nervous activity is highest. Using mimetic peptides and site-directed mutagenesis, we identified a specific amino acid sequence in the Panx1 intracellular loop that is essential for activation by α1AR signaling. Collectively, these data describe a specific link between noradrenergic and purinergic signaling in blood pressure homeostasis.


Assuntos
Pressão Sanguínea/fisiologia , Conexinas/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais/fisiologia , Vasoconstrição/fisiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Análise de Variância , Animais , Western Blotting , Conexinas/genética , Endotelina-1/metabolismo , Imunofluorescência , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Músculo Liso Vascular/citologia , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Serotonina/metabolismo , Telemetria
8.
Arterioscler Thromb Vasc Biol ; 32(5): 1271-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22383705

RESUMO

OBJECTIVE: Plasminogen activator inhibitor-1 (PAI-1) has previously been shown to be key to the formation of myoendothelial junctions (MEJs) in normal and pathological states (eg, obesity). We therefore sought to identify the mechanism whereby PAI-1 could be selectively accumulated at the MEJ. METHODS AND RESULTS: We identified PAI-1 protein enrichment at the MEJ in obese mice and in response to tumor necrosis factor (TNF-α) with a vascular cell coculture. However, PAI-1 mRNA was also found at the MEJ and transfection with a PAI-1-GFP with TNF-α did not demonstrate trafficking of the protein to the MEJ. We therefore hypothesized the PAI-1 mRNA was being locally translated and identified serpine binding protein-1, which stabilizes PAI-1 mRNA, as being enriched in obese mice and after treatment with TNF-α, whereas Staufen, which degrades PAI-1 mRNA, was absent in obese mice and after TNF-α application. We identified nicotinamide phosphoribosyl transferase as a serpine binding protein-1 binding partner with a functional τ-like microtubule binding domain. Application of peptides against the microtubule binding domain significantly decreased the number of MEJs and the amount of PAI-1 at the MEJ. CONCLUSIONS: We conclude that PAI-1 can be locally translated at the MEJ as a result of a unique mRNA binding protein complex.


Assuntos
Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Músculo Liso Vascular/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Endotélio Vascular/ultraestrutura , Junções Intercelulares , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microscopia Eletrônica de Transmissão , Músculo Liso Vascular/ultraestrutura , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Transcrição Gênica
9.
Arterioscler Thromb Vasc Biol ; 31(2): 399-407, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21071693

RESUMO

OBJECTIVE: To determine whether S-nitrosylation of connexins (Cxs) modulates gap junction communication between endothelium and smooth muscle. METHODS AND RESULTS: Heterocellular communication is essential for endothelium control of smooth muscle constriction; however, the exact mechanism governing this action remains unknown. Cxs and NO have been implicated in regulating heterocellular communication in the vessel wall. The myoendothelial junction serves as a conduit to facilitate gap junction communication between endothelial cells and vascular smooth muscle cells within the resistance vasculature. By using isolated vessels and a vascular cell coculture, we found that Cx43 is constitutively S-nitrosylated on cysteine 271 because of active endothelial NO synthase compartmentalized at the myoendothelial junction. Conversely, we found that stimulation of smooth muscle cells with the constrictor phenylephrine caused Cx43 to become denitrosylated because of compartmentalized S-nitrosoglutathione reductase, which attenuated channel permeability. We measured S-nitrosoglutathione breakdown and NO(x) concentrations at the myoendothelial junction and found S-nitrosoglutathione reductase activity to precede NO release. CONCLUSIONS: This study provides evidence for compartmentalized S-nitrosylation/denitrosylation in the regulation of smooth muscle cell to endothelial cell communication.


Assuntos
Comunicação Celular/fisiologia , Conexina 43/metabolismo , Endotélio Vascular/citologia , Junções Comunicantes/metabolismo , Glutationa Redutase/metabolismo , Músculo Liso Vascular/citologia , S-Nitrosoglutationa/metabolismo , Álcool Desidrogenase , Animais , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Glutationa Redutase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fenilefrina/farmacologia , Resistência Vascular/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasoconstritores/farmacologia
10.
J Vasc Res ; 47(4): 277-86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20016202

RESUMO

BACKGROUND/AIMS: Myoendothelial junctions (MEJs) represent a specialized signaling domain between vascular smooth muscle cells (VSMC) and endothelial cells (EC). The functional consequences of phosphorylation state of the connexins (Cx) at the MEJ have not been explored. METHODS/RESULTS: Application of adenosine 3',5'-cyclic monophosphate sodium (pCPT) to mouse cremasteric arterioles reduces the detection of connexin 43 (Cx43) phosphorylated at its carboxyl terminal serine 368 site (S368) at the MEJ in vivo. After single-cell microinjection of a VSMC in mouse cremaster arterioles, only in the presence of pCPT was dye transfer to EC observed. We used a vascular cell co-culture (VCCC) and applied the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (PMA) or fibroblast growth factor-2 (FGF-2) to induce phosphorylation of Cx43 S368. This phosphorylation event was associated with a significant reduction in dye transfer and calcium communication. Using a novel method to monitor increases in intracellular calcium across the in vitro MEJ, we noted that PMA and FGF-2 both inhibited movement of inositol 1,4,5-triphosphate (IP(3)), but to a lesser extent Ca(2+). CONCLUSION: These data indicate that site-specific connexin phosphorylation at the MEJ can potentially regulate the movement of solutes between EC and VSMC in the vessel wall.


Assuntos
Comunicação Celular , Conexina 43/metabolismo , Células Endoteliais/metabolismo , Junções Comunicantes/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Arteríolas/metabolismo , Cálcio/metabolismo , Células Cultivadas , Técnicas de Cocultura , AMP Cíclico/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Serina , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA