Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Commun Biol ; 7(1): 298, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461354

RESUMO

Förster resonance energy transfer (FRET) is a widely-used and versatile technique for the structural characterization of biomolecules. Here, we introduce FRETpredict, an easy-to-use Python software to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses a rotamer library approach to describe the FRET probes covalently bound to the protein. The software efficiently and flexibly operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We provide access to rotamer libraries for many commonly used dyes and linkers and describe a general methodology to generate new rotamer libraries for FRET probes. We demonstrate the performance and accuracy of the software for different types of systems: a rigid peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict .


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas Intrinsicamente Desordenadas , Transferência Ressonante de Energia de Fluorescência/métodos , Software , Simulação de Dinâmica Molecular , Conformação Proteica
2.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36789411

RESUMO

Here, we introduce FRETpredict, a Python software program to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses an established Rotamer Library Approach to describe the FRET probes covalently bound to the protein. The software efficiently operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We demonstrate the performance and accuracy of the software for different types of systems: a relatively structured peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). We also describe a general approach to generate new rotamer libraries for FRET probes of interest. FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict.

3.
Science ; 371(6531): 846-849, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602856

RESUMO

Mitochondrial ribosomes (mitoribosomes) are tethered to the mitochondrial inner membrane to facilitate the cotranslational membrane insertion of the synthesized proteins. We report cryo-electron microscopy structures of human mitoribosomes with nascent polypeptide, bound to the insertase oxidase assembly 1-like (OXA1L) through three distinct contact sites. OXA1L binding is correlated with a series of conformational changes in the mitoribosomal large subunit that catalyze the delivery of newly synthesized polypeptides. The mechanism relies on the folding of mL45 inside the exit tunnel, forming two specific constriction sites that would limit helix formation of the nascent chain. A gap is formed between the exit and the membrane, making the newly synthesized proteins accessible. Our data elucidate the basis by which mitoribosomes interact with the OXA1L insertase to couple protein synthesis and membrane delivery.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/biossíntese , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Microscopia Crioeletrônica , Complexo IV da Cadeia de Transporte de Elétrons/química , Humanos , Proteínas de Membrana/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Ribossomos Mitocondriais/ultraestrutura , Modelos Moleculares , Proteínas Nucleares/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ribossomos/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(25): 14119-14126, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513720

RESUMO

Proteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using force profile analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other's folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in piconewtons. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.


Assuntos
Dobramento de Proteína , Espectrina/química , Escherichia coli , Simulação de Dinâmica Molecular , Biossíntese de Proteínas , Domínios Proteicos , Espectrina/genética , Espectrina/metabolismo
5.
Nat Commun ; 10(1): 2453, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165735

RESUMO

RNA chaperones are proteins that aid in the folding of nucleic acids, but remarkably, many of these proteins are intrinsically disordered. How can these proteins function without a well-defined three-dimensional structure? Here, we address this question by studying the hepatitis C virus core protein, a chaperone that promotes viral genome dimerization. Using single-molecule fluorescence spectroscopy, we find that this positively charged disordered protein facilitates the formation of compact nucleic acid conformations by acting as a flexible macromolecular counterion that locally screens repulsive electrostatic interactions with an efficiency equivalent to molar salt concentrations. The resulting compaction can bias unfolded nucleic acids towards folding, resulting in faster folding kinetics. This potentially widespread mechanism is supported by molecular simulations that rationalize the experimental findings by describing the chaperone as an unstructured polyelectrolyte.


Assuntos
Hepacivirus/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Dobramento de RNA , RNA Viral/metabolismo , Proteínas do Core Viral/metabolismo , Dimerização , Genoma Viral , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos/metabolismo , Imagem Individual de Molécula , Espectrometria de Fluorescência , Eletricidade Estática
6.
J Phys Chem Lett ; 10(9): 2227-2234, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30990694

RESUMO

Experimental studies on intrinsically disordered and unfolded proteins have shown that in isolation they typically have low populations of secondary structure and exhibit distance scalings suggesting that they are at near-theta-solvent conditions. Until recently, however, all-atom force fields failed to reproduce these fundamental properties of intrinsically disordered proteins (IDPs). Recent improvements by refining against ensemble-averaged experimental observables for polypeptides in aqueous solution have addressed deficiencies including secondary structure bias, global conformational properties, and thermodynamic parameters of biophysical reactions such as folding and collapse. To date, studies utilizing these improved all-atom force fields have mostly been limited to a small set of unfolded or disordered proteins. Here, we present data generated for a diverse library of unfolded or disordered proteins using three progressively improved generations of Amber03 force fields, and we explore how global and local properties are affected by each successive change in the force field. We find that the most recent force field refinements significantly improve the agreement of the global properties such as radii of gyration and end-to-end distances with experimental estimates. However, these global properties are largely independent of the local secondary structure propensity. This result stresses the need to validate force fields with reference to a combination of experimental data providing information about both local and global structure formation.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Fenômenos Físicos , Solventes/química , Conformação Proteica , Desdobramento de Proteína , Termodinâmica
7.
J Phys Chem B ; 122(49): 11147-11154, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30129367

RESUMO

The analysis and interpretation of single molecule force spectroscopy (smFS) experiments is often complicated by hidden effects from the measuring device. Here we investigate these effects in our recent smFS experiments on the ultrafast folding protein gpW, which has been previously shown to fold without crossing a free energy barrier in the absence of force (i.e., downhill folding). Using atomic force microscopy (AFM) smFS experiments, we found that a very small force of ∼5 pN brings gpW near its unfolding midpoint and results in two-state (un)folding patterns that indicate the emergence of a force-induced free energy barrier. The change in the folding regime is concomitant with a 30,000-fold slowdown of the folding and unfolding times, from a few microseconds that it takes gpW to (un)fold at the midpoint temperature to seconds in the AFM. These results are puzzling because the barrier induced by force in the folding free energy landscape of gpW is far too small to account for such a difference in time scales. Here we use recently developed theoretical methods to resolve the origin of the strikingly slow dynamics of gpW under mechanical force. We find that, while the AFM experiments correctly capture the equilibrium distance distribution, the measured dynamics are entirely controlled by the response of the cantilever and polyprotein linker, which is much slower than the protein conformational dynamics. This interpretation is likely applicable to the folding of other small biomolecules in smFS experiments, and becomes particularly important in the case of systems with fast folding dynamics and small free energy barriers, and for instruments with slow response times.


Assuntos
Dobramento de Proteína , Proteínas/química , Fenômenos Mecânicos , Microscopia de Força Atômica , Conformação Proteica , Temperatura
8.
PLoS Comput Biol ; 14(1): e1005941, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364893

RESUMO

Membraneless organelles important to intracellular compartmentalization have recently been shown to comprise assemblies of proteins which undergo liquid-liquid phase separation (LLPS). However, many proteins involved in this phase separation are at least partially disordered. The molecular mechanism and the sequence determinants of this process are challenging to determine experimentally owing to the disordered nature of the assemblies, motivating the use of theoretical and simulation methods. This work advances a computational framework for conducting simulations of LLPS with residue-level detail, and allows for the determination of phase diagrams and coexistence densities of proteins in the two phases. The model includes a short-range contact potential as well as a simplified treatment of electrostatic energy. Interaction parameters are optimized against experimentally determined radius of gyration data for multiple unfolded or intrinsically disordered proteins (IDPs). These models are applied to two systems which undergo LLPS: the low complexity domain of the RNA-binding protein FUS and the DEAD-box helicase protein LAF-1. We develop a novel simulation method to determine thermodynamic phase diagrams as a function of the total protein concentration and temperature. We show that the model is capable of capturing qualitative changes in the phase diagram due to phosphomimetic mutations of FUS and to the presence or absence of the large folded domain in LAF-1. We also explore the effects of chain-length, or multivalency, on the phase diagram, and obtain results consistent with Flory-Huggins theory for polymers. Most importantly, the methodology presented here is flexible so that it can be easily extended to other pair potentials, be used with other enhanced sampling methods, and may incorporate additional features for biological systems of interest.


Assuntos
Simulação por Computador , Proteínas Nucleares/química , Organelas/fisiologia , Dobramento de Proteína , Proteína FUS de Ligação a RNA/química , Análise de Sequência/métodos , Biologia Computacional/métodos , Interações Hidrofóbicas e Hidrofílicas , Mutação , Polímeros/química , Proteínas de Ligação a RNA/química , Eletricidade Estática , Temperatura
9.
EMBO J ; 36(20): 2951-2967, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28790177

RESUMO

Neuronal inclusions of aggregated RNA-binding protein fused in sarcoma (FUS) are hallmarks of ALS and frontotemporal dementia subtypes. Intriguingly, FUS's nearly uncharged, aggregation-prone, yeast prion-like, low sequence-complexity domain (LC) is known to be targeted for phosphorylation. Here we map in vitro and in-cell phosphorylation sites across FUS LC We show that both phosphorylation and phosphomimetic variants reduce its aggregation-prone/prion-like character, disrupting FUS phase separation in the presence of RNA or salt and reducing FUS propensity to aggregate. Nuclear magnetic resonance spectroscopy demonstrates the intrinsically disordered structure of FUS LC is preserved after phosphorylation; however, transient domain collapse and self-interaction are reduced by phosphomimetics. Moreover, we show that phosphomimetic FUS reduces aggregation in human and yeast cell models, and can ameliorate FUS-associated cytotoxicity. Hence, post-translational modification may be a mechanism by which cells control physiological assembly and prevent pathological protein aggregation, suggesting a potential treatment pathway amenable to pharmacologic modulation.


Assuntos
Processamento de Proteína Pós-Traducional , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/patologia , Linhagem Celular , Demência Frontotemporal/patologia , Humanos , Espectroscopia de Ressonância Magnética , Fosforilação , Agregação Patológica de Proteínas , Conformação Proteica , Proteína FUS de Ligação a RNA/química
10.
Nat Chem ; 9(1): 88-95, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27995927

RESUMO

FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.


Assuntos
Hidrogênio/química , Hidrogenase/química , Oxigênio/química , Catálise , Clostridium/enzimologia , Difusão , Técnicas Eletroquímicas , Hidrogenase/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Teoria Quântica
11.
J Am Chem Soc ; 138(36): 11714-26, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27583570

RESUMO

There has been a long-standing controversy regarding the effect of chemical denaturants on the dimensions of unfolded and intrinsically disordered proteins: A wide range of experimental techniques suggest that polypeptide chains expand with increasing denaturant concentration, but several studies using small-angle X-ray scattering (SAXS) have reported no such increase of the radius of gyration (Rg). This inconsistency challenges our current understanding of the mechanism of chemical denaturants, which are widely employed to investigate protein folding and stability. Here, we use a combination of single-molecule Förster resonance energy transfer (FRET), SAXS, dynamic light scattering (DLS), and two-focus fluorescence correlation spectroscopy (2f-FCS) to characterize the denaturant dependence of the unfolded state of the spectrin domain R17 and the intrinsically disordered protein ACTR in two different denaturants. Standard analysis of the primary data clearly indicates an expansion of the unfolded state with increasing denaturant concentration irrespective of the protein, denaturant, or experimental method used. This is the first case in which SAXS and FRET have yielded even qualitatively consistent results regarding expansion in denaturant when applied to the same proteins. To more directly illustrate this self-consistency, we used both SAXS and FRET data in a Bayesian procedure to refine structural ensembles representative of the observed unfolded state. This analysis demonstrates that both of these experimental probes are compatible with a common ensemble of protein configurations for each denaturant concentration. Furthermore, the resulting ensembles reproduce the trend of increasing hydrodynamic radius with denaturant concentration obtained by 2f-FCS and DLS. We were thus able to reconcile the results from all four experimental techniques quantitatively, to obtain a comprehensive structural picture of denaturant-induced unfolded state expansion, and to identify the most likely sources of earlier discrepancies.


Assuntos
Peptídeos/química , Desnaturação Proteica/efeitos dos fármacos , Teorema de Bayes , Transferência Ressonante de Energia de Fluorescência , Espalhamento a Baixo Ângulo , Difração de Raios X
12.
Phys Rev Lett ; 116(6): 068102, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26919016

RESUMO

Experiments measuring contact formation between probes in disordered chains provide information on the fundamental time scales relevant to protein folding. However, their interpretation usually relies on one-dimensional (1D) diffusion models, as do many experiments probing a single distance. Here, we use all-atom molecular simulations to capture both the time scales of contact formation, as well as the scaling with peptide length for tryptophan triplet quenching experiments, revealing the sensitivity of the experimental quenching times to the configurational space explored by the chain. We find a remarkable consistency between the results of the full calculation and from Szabo-Schulten-Schulten theory applied to a 1D diffusion model, supporting the validity of such models. The significant reduction in diffusion coefficient at the small probe separations which most influence quenching rate, suggests that contact formation and Förster resonance energy transfer correlation experiments provide complementary information on diffusivity.


Assuntos
Modelos Químicos , Peptídeos/química , Simulação por Computador , Difusão , Transferência Ressonante de Energia de Fluorescência , Estrutura Secundária de Proteína , Triptofano/química
13.
J Chem Theory Comput ; 11(11): 5543-53, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26574341

RESUMO

Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein-denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C(AGQ)nW in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Modelos Moleculares , Peptídeos/química , Desnaturação Proteica , Ureia/química
14.
Biophys J ; 108(11): 2721-31, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26039173

RESUMO

Molecular simulation is a valuable and complementary tool that may assist with the interpretation of single-molecule Förster resonance energy transfer (FRET) experiments, if the energy function is of sufficiently high quality. Here we present force-field parameters for one of the most common pairs of chromophores used in experiments, AlexaFluor 488 and 594. From microsecond molecular-dynamics simulations, we are able to recover both experimentally determined equilibrium constants and association/dissociation rates of the chromophores with free tryptophan, as well as the decay of fluorescence anisotropy of a labeled protein. We find that it is particularly important to obtain a correct balance of solute-water interactions in the simulations in order to faithfully capture the experimental anisotropy decays, which provide a sensitive benchmark for fluorophore mobility. Lastly, by a combination of experiment and simulation, we address a potential complication in the interpretation of experiments on polyproline, used as a molecular ruler for FRET experiments, namely the potential association of one of the chromophores with the polyproline helix. Under conditions where simulations accurately capture the fluorescence anisotropy decay, we find at most a modest, transient population of conformations in which the chromophores associate with the polyproline. Explicit calculation of FRET transfer efficiencies for short polyprolines yields results in good agreement with experiment. These results illustrate the potential power of a combination of molecular simulation and experiment in quantifying biomolecular dynamics.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Corantes Fluorescentes/química , Peptídeos/química , Conformação Proteica , Proteínas/química , Triptofano/química
15.
J Am Chem Soc ; 137(9): 3283-90, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25721133

RESUMO

An outstanding challenge in protein folding is understanding the origin of "internal friction" in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Cadeias de Markov , Peptídeos/química , Conformação Proteica , Receptores de GABA-B/química
16.
J Chem Phys ; 141(22): 22D522, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25494793

RESUMO

In contrast to the well-known destabilization of globular proteins by high pressure, recent work has shown that pressure stabilizes the formation of isolated α-helices. However, all simulations to date have obtained a qualitatively opposite result within the experimental pressure range. We show that using a protein force field (Amber03w) parametrized in conjunction with an accurate water model (TIP4P/2005) recovers the correct pressure-dependence and an overall stability diagram for helix formation similar to that from experiment; on the other hand, we confirm that using TIP3P water results in a very weak pressure destabilization of helices. By carefully analyzing the contributing factors, we show that this is not merely a consequence of different peptide conformations sampled using TIP3P. Rather, there is a critical role for the solvent itself in determining the dependence of total system volume (peptide and solvent) on helix content. Helical peptide structures exclude a smaller volume to water, relative to non-helical structures with both the water models, but the total system volume for helical conformations is higher than non-helical conformations with TIP3P water at low to intermediate pressures, in contrast to TIP4P/2005 water. Our results further emphasize the importance of using an accurate water model to study protein folding under conditions away from standard temperature and pressure.


Assuntos
Peptídeos/química , Pressão , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Termodinâmica , Água/química
17.
Biophys J ; 105(7): 1661-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094407

RESUMO

We report for the first time, to our knowledge, that the N-terminal loop (N_loop) of amylin (islet amyloid polypeptide (IAPP) residues 1-8) forms extremely long and stable non-ß-sheet fibers in solution under the same conditions in which human amylin (hIAPP) forms amyloid fibers. This observation applies to the cyclic, oxidized form of the N_loop but not to the linear, reduced form, which does not form fibers. Our findings indicate a potential role of direct N_loop-N_loop interactions in hIAPP aggregation, which has not been previously explored, with important implications for the mechanism of hIAPP amyloid fiber formation, the inhibitory action of IAPP variants, and the competition between ordered and disordered aggregation in peptides of the calcitonin peptide family.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polimerização , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ratos
19.
Biophys J ; 103(5): 1045-51, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23009854

RESUMO

Folding simulations on peptides and proteins using empirical force fields have demonstrated the sensitivity of the results to details of the backbone potential. A recently revised version of the additive CHARMM protein force field, which includes optimization of the backbone CMAP potential to achieve good balance between different types of secondary structure, correcting the α-helical bias present in the former CHARMM22/CMAP energy function, is shown to result in improved cooperativity for the helix-coil transition. This is due to retention of the empirical corrections introduced in the original CMAP to reproduce folded protein structures-corrections that capture many-body effects missing from an energy surface fitted to gas phase calculations on dipeptides. The experimental temperature dependence of helix formation in (AAQAA)(3) and parameters for helix nucleation and elongation are in much better agreement with experiment than those obtained with other recent force fields. In contrast, CMAP parameters derived by fitting to a vacuum quantum mechanical surface for the alanine dipeptide do not reproduce the enhanced cooperativity, showing that the empirical backbone corrections, and not some other feature of the force field, are responsible. We also find that the cooperativity of ß-hairpin formation is much improved relative to other force fields we have studied. Comparison with (ϕ,ψ) distributions from the Protein Data Bank further justifies the inclusion of many-body effects in the CMAP. These results suggest that the revised energy function will be suitable for both simulations of unfolded or intrinsically disordered proteins and for investigating protein-folding mechanisms.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Proteínas de Bactérias/química , Peptídeos/química , Estrutura Secundária de Proteína , Desdobramento de Proteína , Teoria Quântica , Temperatura , Termodinâmica
20.
J Am Chem Soc ; 134(14): 6273-9, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22414068

RESUMO

Frictional effects due to the chain itself, rather than the solvent, may have a significant effect on protein dynamics. Experimentally, such "internal friction" has been investigated by studying folding or binding kinetics at varying solvent viscosity; however, the molecular origin of these effects is hard to pinpoint. We consider the kinetics of disordered glycine-serine and α-helix forming alanine peptides and a coarse-grained protein folding model in explicit-solvent molecular dynamics simulations. By varying the solvent mass over more than two orders of magnitude, we alter only the solvent viscosity and not the folding free energy. Folding dynamics at the near-vanishing solvent viscosities accessible by this approach suggests that solvent and internal friction effects are intrinsically entangled. This finding is rationalized by calculation of the polymer end-to-end distance dynamics from a Rouse model that includes internal friction. An analysis of the friction profile along different reaction coordinates, extracted from the simulation data, demonstrates that internal as well as solvent friction varies substantially along the folding pathways and furthermore suggests a connection between friction and the formation of hydrogen bonds upon folding.


Assuntos
Óxido de Deutério/química , Peptídeos/química , Dobramento de Proteína , Água/química , Físico-Química/métodos , Simulação por Computador , Fricção , Ligação de Hidrogênio , Cinética , Modelos Químicos , Modelos Estatísticos , Distribuição Normal , Polímeros/química , Estrutura Secundária de Proteína , Solventes/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA