Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 54(8): 2109-2120, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23733885

RESUMO

Triglyceride (TG) accumulation in hepatocytes (hepatic steatosis) preludes the development of advanced nonalcoholic fatty liver diseases (NAFLDs) such as steatohepatitis, fibrosis, and cirrhosis. Mutations in human Comparative Gene Identification-58 (CGI-58) cause cytosolic TG-rich lipid droplets to accumulate in almost all cell types including hepatocytes. However, it is unclear if CGI-58 mutation causes hepatic steatosis locally or via altering lipid metabolism in other tissues. To directly address this question, we created liver-specific CGI-58 knockout (LivKO) mice. LivKO mice on standard chow diet displayed microvesicular and macrovesicular panlobular steatosis, and progressed to advanced NAFLD stages over time, including lobular inflammation and centrilobular fibrosis. Compared with CGI-58 floxed control littermates, LivKO mice showed 8-fold and 52-fold increases in hepatic TG content, which was associated with 40% and 58% decreases in hepatic TG hydrolase activity at 16 and 42 weeks, respectively. Hepatic cholesterol also increased significantly in LivKO mice. At 42 weeks, LivKO mice showed increased hepatic oxidative stress, plasma aminotransferases, and hepatic mRNAs for genes involved in fibrosis and inflammation, such as α-smooth muscle actin, collagen type 1 α1, tumor necrosis factor α, and interleukin-1ß. In conclusion, CGI-58 deficiency in the liver directly causes not only hepatic steatosis but also steatohepatitis and fibrosis.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Fígado Gorduroso/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/deficiência , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Animais , Fígado Gorduroso/patologia , Feminino , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Diabetes ; 61(2): 355-63, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22228714

RESUMO

Mutations of comparative gene identification 58 (CGI-58) in humans cause Chanarin-Dorfman syndrome, a rare autosomal recessive disease in which excess triacylglycerol (TAG) accumulates in multiple tissues. CGI-58 recently has been ascribed two distinct biochemical activities, including coactivation of adipose triglyceride lipase and acylation of lysophosphatidic acid (LPA). It is noteworthy that both the substrate (LPA) and the product (phosphatidic acid) of the LPA acyltransferase reaction are well-known signaling lipids. Therefore, we hypothesized that CGI-58 is involved in generating lipid mediators that regulate TAG metabolism and insulin sensitivity. Here, we show that CGI-58 is required for the generation of signaling lipids in response to inflammatory stimuli and that lipid second messengers generated by CGI-58 play a critical role in maintaining the balance between inflammation and insulin action. Furthermore, we show that CGI-58 is necessary for maximal TH1 cytokine signaling in the liver. This novel role for CGI-58 in cytokine signaling may explain why diminished CGI-58 expression causes severe hepatic lipid accumulation yet paradoxically improves hepatic insulin action. Collectively, these findings establish that CGI-58 provides a novel source of signaling lipids. These findings contribute insight into the basic mechanisms linking TH1 cytokine signaling to nutrient metabolism.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/fisiologia , Resistência à Insulina , Transdução de Sinais , Aciltransferases/fisiologia , Animais , Dieta Hiperlipídica , Endotoxinas/toxicidade , Inflamação/etiologia , Lipólise , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
3.
J Lipid Res ; 52(11): 2032-42, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21885429

RESUMO

Adipose triglyceride lipase (ATGL) catalyzes the first step of triacylglycerol hydrolysis in adipocytes. Abhydrolase domain 5 (ABHD5) increases ATGL activity by an unknown mechanism. Prior studies have suggested that the expression of ABHD5 is limiting for lipolysis in adipocytes, as addition of recombinant ABHD5 increases in vitro TAG hydrolase activity of adipocyte lysates. To test this hypothesis in vivo, we generated transgenic mice that express 6-fold higher ABHD5 in adipose tissue relative to wild-type (WT) mice. In vivo lipolysis increased to a similar extent in ABHD5 transgenic and WT mice following an overnight fast or injection of either a ß-adrenergic receptor agonist or lipopolysaccharide. Similarly, basal and ß-adrenergic-stimulated lipolysis was comparable in adipocytes isolated from ABHD5 transgenic and WT mice. Although ABHD5 expression was elevated in thioglycolate-elicited macrophages from ABHD5 transgenic mice, Toll-like receptor 4 (TLR4) signaling was comparable in macrophages isolated from ABHD5 transgenic and WT mice. Overexpression of ABHD5 did not prevent the development of obesity in mice fed a high-fat diet, as shown by comparison of body weight, body fat percentage, and adipocyte hypertrophy of ABHD5 transgenic to WT mice. The expression of ABHD5 in mouse adipose tissue is not limiting for either basal or stimulated lipolysis.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipólise/genética , Obesidade/genética , Obesidade/prevenção & controle , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Animais , Feminino , Expressão Gênica , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Obesidade/etiologia
4.
J Muscle Res Cell Motil ; 31(3): 215-25, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20717711

RESUMO

Mechanical stretch of skeletal muscle activates nitric oxide (NO) production and is an important stimulator of satellite cell proliferation. Further, cyclooxygenase (COX) activity has been shown to promote satellite cell proliferation in response to stretch. Since COX-2 expression in skeletal muscle can be regulated by NO we sought to determine if NO is required for stretch-induced myoblast proliferation and whether supplemental NO can counter the effects of COX-2 and NF-kappaB inhibitors. C2C12 myoblasts were cultured for 24 h, then switched to medium containing either the NOS inhibitor, L-NAME (200 microM), the COX-2 specific inhibitor NS-398 (100 microM), the NF-kappaB inhibiting antioxidant, PDTC (5 mM), the nitric oxide donor, DETA-NONOate (10-100 microM) or no supplement (control) for 24 h. Subgroups of each treatment were exposed to 1 h of 15% cyclic stretch (1 Hz), and were then allowed to proliferate for 24 h before fixing. Proliferation was measured by BrdU incorporation during the last hour before fixing, and DAPI stain. Stretch induced a twofold increase in nuclear number compared to control, and this effect was completely inhibited by L-NAME, NS-398 or PDTC (P < 0.05). Although DETA-NONOate (10 microM) did not affect basal proliferation, the NO-donor augmented the stretch-induced increase in proliferation and rescued stretch-induced proliferation in NS-398-treated cells, but not in PDTC-treated cells. In conclusion, NO, COX-2, and NF-kappaB are necessary for stretch-induced proliferation of myoblasts. Although COX-2 and NF-kappaB are both involved in basal proliferation, NO does not affect basal growth. Thus, NO requires the synergistic effect of stretch in order to induce muscle cell proliferation.


Assuntos
Proliferação de Células , Mioblastos Esqueléticos/metabolismo , Óxido Nítrico/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Relação Dose-Resposta a Droga , Camundongos , Mioblastos Esqueléticos/citologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitrobenzenos/farmacologia , Compostos Nitrosos/farmacologia , Prolina/análogos & derivados , Prolina/farmacologia , Sulfonamidas/farmacologia , Tiocarbamatos/farmacologia , Fatores de Tempo
5.
J Appl Physiol (1985) ; 100(1): 258-65, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16166235

RESUMO

Inhibition of nitric oxide synthase (NOS) activity in vivo impedes hypertrophy in the overloaded rat plantaris. We investigated the mechanism for this effect by examining early events leading to muscle growth following 5 or 12 days of functional overload. Male Sprague-Dawley rats (approximately 350 g) were randomly divided into three treatment groups: control, N(G)-nitro-L-arginine methyl ester (L-NAME; 90 mg.kg(-1).day(-1)), and 1-(2-trifluoromethyl-phenyl)-imidazole (TRIM; 10 mg.kg(-1).day(-1)). Unilateral removal of synergists induced chronic overload (OL) of the right plantaris. Sham surgery performed on the left hindlimb served as a normally loaded control. L-NAME and TRIM treatments prevented OL-induced skeletal alpha-actin and type I (slow) myosin heavy chain mRNA expression at 5 days. Conversely, neither L-NAME nor TRIM affected hepatocyte growth factor or VEGF mRNA responses to OL at 5 days. However, OL induction of IGF-I and mechanogrowth factor mRNA was greater (P < 0.05) in the TRIM group compared with the controls. Furthermore, the phosphorylated-to-total p70 S6 kinase ratio was higher in OL muscle from NOS-inhibited groups, compared with control OL. At 12 days of OL, the cumulative proliferation of plantaris satellite cells was assessed by subcutaneous implantation of time release 5'-bromo-2'-deoxyuridine pellets during the OL-inducing surgeries. Although OL caused a fivefold increase in the number of mitotically active (5'-bromo-2'-deoxyuridine positive) sublaminar nuclei, this was unaffected by concurrent NOS inhibition. Therefore, NOS activity may provide negative feedback control of IGF-I/p70 S6 kinase signaling during muscle growth. Moreover, NOS activity may be involved in transcriptional regulation of skeletal alpha-actin and type I (slow) myosin heavy chain during functional overload.


Assuntos
Proteínas Contráteis/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , NG-Nitroarginina Metil Éster/administração & dosagem , Óxido Nítrico Sintase/metabolismo , RNA Mensageiro/metabolismo , Animais , Articulação do Tornozelo/fisiopatologia , Proteínas Contráteis/genética , Transtornos Traumáticos Cumulativos , Inibidores Enzimáticos/administração & dosagem , Masculino , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA