Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 26(11): 1565-1574, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27646535

RESUMO

Haplotypes are fundamental to fully characterize the diploid genome of an individual, yet methods to directly chart the unique genetic makeup of each parental chromosome are lacking. Here we introduce single-cell DNA template strand sequencing (Strand-seq) as a novel approach to phasing diploid genomes along the entire length of all chromosomes. We demonstrate this by building a complete haplotype for a HapMap individual (NA12878) at high accuracy (concordance 99.3%), without using generational information or statistical inference. By use of this approach, we mapped all meiotic recombination events in a family trio with high resolution (median range ∼14 kb) and phased larger structural variants like deletions, indels, and balanced rearrangements like inversions. Lastly, the single-cell resolution of Strand-seq allowed us to observe loss of heterozygosity regions in a small number of cells, a significant advantage for studies of heterogeneous cell populations, such as cancer cells. We conclude that Strand-seq is a unique and powerful approach to completely phase individual genomes and map inheritance patterns in families, while preserving haplotype differences between single cells.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Humanos/genética , Haplótipos , Análise de Célula Única/métodos , Linhagem Celular , Projeto HapMap , Recombinação Homóloga , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Mutação
2.
Am J Hum Genet ; 92(4): 627-31, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23561848

RESUMO

The Krebs cycle is of fundamental importance for the generation of the energetic and molecular needs of both prokaryotic and eukaryotic cells. Both enantiomers of metabolite 2-hydroxyglutarate are directly linked to this pivotal biochemical pathway and are found elevated not only in several cancers, but also in different variants of the neurometabolic disease 2-hydroxyglutaric aciduria. Recently we showed that cancer-associated IDH2 germline mutations cause one variant of 2-hydroxyglutaric aciduria. Complementary to these findings, we now report recessive mutations in SLC25A1, the mitochondrial citrate carrier, in 12 out of 12 individuals with combined D-2- and L-2-hydroxyglutaric aciduria. Impaired mitochondrial citrate efflux, demonstrated by stable isotope labeling experiments and the absence of SLC25A1 in fibroblasts harboring certain mutations, suggest that SLC25A1 deficiency is pathogenic. Our results identify defects in SLC25A1 as a cause of combined D-2- and L-2-hydroxyglutaric aciduria.


Assuntos
Proteínas de Transporte de Ânions/genética , Encefalopatias Metabólicas Congênitas/etiologia , Ácido Cítrico/metabolismo , Genes Recessivos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutação/genética , Sequência de Aminoácidos , Biomarcadores/análise , Encefalopatias Metabólicas Congênitas/metabolismo , Encefalopatias Metabólicas Congênitas/patologia , Estudos de Casos e Controles , Células Cultivadas , Cromatografia Líquida , Exoma/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glutaratos/urina , Humanos , Masculino , Dados de Sequência Molecular , Transportadores de Ânions Orgânicos , Fenótipo , Estrutura Terciária de Proteína , Estudos Retrospectivos , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Espectrometria de Massas em Tandem
3.
Eur J Hum Genet ; 19(6): 682-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21326284

RESUMO

Celiac disease is an inflammatory enteropathy caused by intolerance to gluten. Previous linkage studies in the Dutch, Finnish and Hungarian populations have revealed a locus on chromosome 6q21-22 conferring susceptibility to celiac disease. This locus has previously been implicated in susceptibility to other autoimmune diseases such as Crohn's disease and type 1 diabetes. We performed fine mapping on 446 independent individuals with celiac disease and 641 controls of Dutch origin, testing 872 tagging SNPs in a 22 Mb region of chromosome 6. The 12 most promising SNPs were followed up in 2071 individuals from 284 Finnish and 357 Hungarian celiac disease families to identify risk variants in this region. Multiple markers in the region were significantly associated with celiac disease in the Dutch material. Two SNPs, rs9391227 and rs4946111, were significantly associated with celiac disease in the Finnish population. The association to rs9391227 represents the strongest association signal found in the Finnish (P = 0.003, OR 0.66) as well as the combined Dutch, Finnish and Hungarian populations (P = 3.6 × 10(-5), OR 0.76). The rs9391227 is situated downstream of the HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 (HACE1) gene and is contained within a region of strong linkage disequilibrium enclosing HACE1. Two additional, independent, susceptibility variants in the 6q21-22 region were also found in a meta-analysis of the three populations. The 6q21-22 region was confirmed as a celiac disease susceptibility locus and harbors multiple independent associations, some of which may implicate ubiquitin-pathways in celiac disease susceptibility.


Assuntos
Doença Celíaca/genética , Cromossomos Humanos Par 6/genética , Predisposição Genética para Doença , Ubiquitina-Proteína Ligases/genética , População Branca/genética , Doença Celíaca/imunologia , Cromossomos Humanos Par 6/química , Estudos de Coortes , Doença de Crohn/genética , Diabetes Mellitus Tipo 1/genética , Finlândia , Glutens/imunologia , Humanos , Hungria , Desequilíbrio de Ligação , Países Baixos , Polimorfismo de Nucleotídeo Único
4.
Am J Hum Genet ; 82(5): 1202-10, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18439550

RESUMO

The two main phenotypes of inflammatory bowel disease (IBD)--Crohn's disease (CD) and ulcerative colitis (UC)--are chronic intestinal inflammatory disorders with a complex genetic background. Using a three-stage design, we performed a functional candidate-gene analysis of innate immune pathway in IBD. In phase I, we typed 354 SNPs from 85 innate immunity genes in 520 Dutch IBD patients (284 CD, 236 UC) and 808 controls. In phase II, ten autosomal SNPs showing association at p < 0.006 in phase I were replicated in a second cohort of 545 IBD patients (326 CD, 219 UC) and 360 controls. In phase III, four SNPs with p < 0.01 in the combined phase I and phase II analysis were genotyped in an additional 786 IBD samples (452 CD, 334 UC) and 768 independent controls. Joint analysis of 1851 IBD patients (1062 CD, 789 UC) and 1936 controls demonstrated strong association to the IL18RAP rs917997 SNP for both CD and UC (p(IBD) 1.9 x 10(-8); OR 1.35). Association in CD is independently supported by the Crohn's disease dataset of the Wellcome Trust Case Control Consortium (imputed SNP rs917997, p = 9.19 x 10(-4)). In addition, an association of the CARD9 rs10870077 SNP to CD and UC was observed (p(IBD) = 3.25 x 10(-5); OR 1.21). Both genes are located in extended haplotype blocks on 2q11-2q12 and 9q34.3, respectively. Our results indicate two IBD loci and further support the importance of the innate immune system in the predisposition to both CD and UC.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Colite Ulcerativa/genética , Doença de Crohn/genética , Imunidade Inata , Subunidade beta de Receptor de Interleucina-18/genética , Desequilíbrio de Ligação , Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino
5.
Nat Genet ; 37(12): 1341-4, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16282976

RESUMO

Celiac disease is probably the best-understood immune-related disorder. The disease presents in the small intestine and results from the interplay between multiple genes and gluten, the triggering environmental factor. Although HLA class II genes explain 40% of the heritable risk, non-HLA genes accounting for most of the familial clustering have not yet been identified. Here we report significant and replicable association (P = 2.1 x 10(-6)) to a common variant located in intron 28 of the gene myosin IXB (MYO9B), which encodes an unconventional myosin molecule that has a role in actin remodeling of epithelial enterocytes. Individuals homozygous with respect to the at-risk allele have a 2.3-times higher risk of celiac disease (P = 1.55 x 10(-5)). This result is suggestive of a primary impairment of the intestinal barrier in the etiology of celiac disease, which may explain why immunogenic gluten peptides are able to pass through the epithelial barrier.


Assuntos
Doença Celíaca/genética , Predisposição Genética para Doença , Miosinas/genética , Polimorfismo de Nucleotídeo Único , Sequência de Aminoácidos , Doença Celíaca/fisiopatologia , Feminino , Haplótipos , Humanos , Intestino Delgado/fisiopatologia , Íntrons/genética , Masculino , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA