Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(7): e39794, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815714

RESUMO

Multiple sclerosis (MS) is a polygenic disease characterized by inflammation and demyelination in the central nervous system (CNS), which can be modeled in experimental autoimmune encephalomyelitis (EAE). The Eae18b locus on rat chromosome 10 has previously been linked to regulation of beta-chemokine expression and severity of EAE. Moreover, the homologous chemokine cluster in humans showed evidence of association with susceptibility to MS. We here established a congenic rat strain with Eae18b locus containing a chemokine cluster (Ccl2, Ccl7, Ccl11, Ccl12 and Ccl1) from the EAE- resistant PVG rat strain on the susceptible DA background and utilized myelin oligodendrocyte glycoprotein (MOG)-induced EAE to characterize the mechanisms underlying the genetic regulation. Congenic rats developed a milder disease compared to the susceptible DA strain, and this was reflected in decreased demyelination and in reduced recruitment of inflammatory cells to the brain. The congenic strain also showed significantly increased Ccl11 mRNA expression in draining lymph nodes and spinal cord after EAE induction. In the lymph nodes, macrophages were the main producers of CCL11, whereas macrophages and lymphocytes expressed the main CCL11 receptor, namely CCR3. Accordingly, the congenic strain also showed significantly increased Ccr3 mRNA expression in lymph nodes. In the CNS, the main producers of CCL11 were neurons, whereas CCR3 was detected on neurons and CSF producing ependymal cells. This corresponded to increased levels of CCL11 protein in the cerebrospinal fluid of the congenic rats. Increased intrathecal production of CCL11 in congenic rats was accompanied by a tighter blood brain barrier, reflected by more occludin(+) blood vessels. In addition, the congenic strain showed a reduced antigen specific response and a predominant anti-inflammatory Th2 phenotype. These results indicate novel mechanisms in the genetic regulation of neuroinflammation.


Assuntos
Quimiocina CCL11/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica/imunologia , Animais , Barreira Hematoencefálica/metabolismo , Loci Gênicos/genética , Homeostase/genética , Homeostase/imunologia , Hibridização Genética , Inflamação/genética , Inflamação/imunologia , Linfonodos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Família Multigênica/genética , Ratos , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Sci Transl Med ; 1(10): 10ra21, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20368159

RESUMO

Multiple sclerosis, the most common cause of progressive neurological disability in young adults, is a chronic inflammatory disease. There is solid evidence for a genetic influence in multiple sclerosis, and deciphering the causative genes could reveal key pathways influencing the disease. A genome region on rat chromosome 9 regulates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Using interval-specific congenic rat lines and association of single-nucleotide polymorphisms with inflammatory phenotypes, we localized the gene of influence to Vav1, which codes for a signal-transducing protein in leukocytes. Analysis of seven human cohorts (12,735 individuals) demonstrated an association of rs2546133-rs2617822 haplotypes in the first VAV1 intron with multiple sclerosis (CA: odds ratio, 1.18; CG: odds ratio, 0.86; TG: odds ratio, 0.90). The risk CA haplotype also predisposed for higher VAV1 messenger RNA expression. VAV1 expression was increased in individuals with multiple sclerosis and correlated with tumor necrosis factor and interferon-gamma expression in peripheral blood and cerebrospinal fluid cells. We conclude that VAV1 plays a central role in controlling central nervous system immune-mediated disease and proinflammatory cytokine production critical for disease pathogenesis.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Esclerose Múltipla/fisiopatologia , Proteínas Proto-Oncogênicas c-vav/fisiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Interferon gama/genética , Esclerose Múltipla/imunologia , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-vav/genética , Locos de Características Quantitativas , Ratos , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA