Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501136

RESUMO

Mild cognitive impairment (MCI) and early Alzheimer's disease (AD) are characterized by blood-brain barrier (BBB) breakdown leading to abnormal BBB permeability ahead of brain atrophy or dementia. Previous findings in AD mouse models have reported the beneficial effect of extra-virgin olive oil (EVOO) against AD, which improved BBB and memory functions and reduced brain amyloid-ß (Aß) and related pathology. This work aimed to translate these preclinical findings to humans in individuals with MCI. We examined the effect of daily consumption of refined olive oil (ROO) and EVOO for 6 months in MCI subjects on BBB permeability (assessed by contrast-enhanced MRI), and brain function (assessed using functional-MRI) as the primary outcomes. Cognitive function and AD blood biomarkers were also assessed as the secondary outcomes. Twenty-six participants with MCI were randomized with 25 participants completed the study. EVOO significantly improved clinical dementia rating (CDR) and behavioral scores. EVOO also reduced BBB permeability and enhanced functional connectivity. While ROO consumption did not alter BBB permeability or brain connectivity, it improved CDR scores and increased functional brain activation to a memory task in cortical regions involved in perception and cognition. Moreover, EVOO and ROO significantly reduced blood Aß42/Aß40 and p-tau/t-tau ratios, suggesting that both altered the processing and clearance of Aß. In conclusion, EVOO and ROO improved CDR and behavioral scores; only EVOO enhanced brain connectivity and reduced BBB permeability, suggesting EVOO biophenols contributed to such an effect. This proof-of-concept study justifies further clinical trials to assess olive oil's protective effects against AD and its potential role in preventing MCI conversion to AD and related dementias.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Humanos , Azeite de Oliva/farmacologia , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo
2.
Chemistry ; 28(46): e202201179, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35666136

RESUMO

A highly water- and air-stable Fe(II) complex with the quinol-containing macrocyclic ligand H4 qp4 reacts with H2 O2 to yield Fe(III) complexes with less highly chelating forms of the ligand that have either one or two para-quinones. The reaction increases the T1 -weighted relaxivity over four-fold, enabling the complex to detect H2 O2 using clinical MRI technology. The iron-containing sensor differs from its recently characterized manganese analog, which also detects H2 O2 , in that it is the oxidation of the metal center, rather than the ligand, that primarily enhances the relaxivity.


Assuntos
Meios de Contraste , Ferro , Ligantes , Imageamento por Ressonância Magnética , Água
3.
Mol Ther Methods Clin Dev ; 17: 258-270, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31970203

RESUMO

GM1 gangliosidosis (GM1) is a fatal neurodegenerative lysosomal storage disease that occurs most commonly in young children, with no effective treatment available. Long-term follow-up of GM1 cats treated by bilateral thalamic and deep cerebellar nuclei (DCN) injection of adeno-associated virus (AAV)-mediated gene therapy has increased lifespan to 8 years of age, compared with an untreated lifespan of ~8 months. Due to risks associated with cerebellar injection in humans, the lateral ventricle was tested as a replacement route to deliver an AAVrh8 vector expressing feline ß-galactosidase (ß-gal), the defective enzyme in GM1. Treatment via the thalamus and lateral ventricle corrected storage, myelination, astrogliosis, and neuronal morphology in areas where ß-gal was effectively delivered. Oligodendrocyte number increased, but only in areas where myelination was corrected. Reduced AAV and ß-gal distribution were noted in the cerebellum with subsequent increases in storage, demyelination, astrogliosis, and neuronal degeneration. These postmortem findings were correlated with endpoint MRI and magnetic resonance spectroscopy (MRS). Compared with the moderate dose with which most cats were treated, a higher AAV dose produced superior survival, currently 6.5 years. Thus, MRI and MRS can predict therapeutic efficacy of AAV gene therapy and non-invasively monitor cellular events within the GM1 brain.

4.
Hum Gene Ther ; 29(3): 312-326, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28922945

RESUMO

Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and ß subunits separately (TSD α + ß) injected at high (1.3 × 1013 vector genomes) or low (4.2 × 1012 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + ß sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + ß), and ganglioside clearance was most widespread in the TSD α + ß high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.


Assuntos
Dependovirus , Terapia Genética , Doença de Tay-Sachs/terapia , Cadeia alfa da beta-Hexosaminidase/biossíntese , Cadeia beta da beta-Hexosaminidase/biossíntese , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/enzimologia , Modelos Animais de Doenças , Ecocardiografia , Humanos , Imageamento por Ressonância Magnética , Microglia/enzimologia , Ovinos , Doença de Tay-Sachs/diagnóstico por imagem , Doença de Tay-Sachs/enzimologia , Doença de Tay-Sachs/genética , Cadeia alfa da beta-Hexosaminidase/genética , Cadeia beta da beta-Hexosaminidase/genética
5.
Exp Physiol ; 102(6): 635-649, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28192862

RESUMO

NEW FINDINGS: What is the central question of this study? The central question of this study is to understand whether dietary quercetin enrichment attenuates physiologic, histological, and biochemical indices of cardiac pathology. What is the main finding and its importance? Novel findings from this investigation, in comparison to prior published studies, suggest that mouse strain-dependent cardiac outcomes in performance and remodelling exist. Unlike Mdx/Utrn-/+ mice, mdx mice receiving lifelong quercetin treatment did not exhibit improvements cardiac function. Similar to prior work in Mdx/Utrn-/+ mice, histological evidence of remodelling suggests that quercetin consumption may have benefited hearts of mdx mice. Positive outcomes may be related to indirect markers that suggest improved mitochondrial wellbeing and to selected indices of inflammation that were lower in hearts from quercetin-fed mice. Duchenne muscular dystrophy causes a decline in cardiac health, resulting in premature mortality. As a potential countermeasure, quercetin is a polyphenol possessing inherent anti-inflammatory and antioxidant effects that activate proliferator-activated γ coactivator 1α (PGC-1α), increasing the abundance of mitochondrial biogenesis proteins. We investigated the extent to which lifelong 0.2% dietary quercetin enrichment attenuates dystrophic cardiopathology in mdx mice. Dystrophic animals were fed a quercetin-enriched or control diet for 12 months, while control C57 mice were fed a control diet. Cardiac function was assessed via 7 T magnetic resonance imaging at 2, 10 and 14 months. At 14 months, hearts were harvested for histology and Western blotting. The results indicated an mdx strain-dependent decline in cardiac performance at 14 months and that dietary quercetin enrichment did not attenuate functional losses. In contrast, histological analyses provided evidence that quercetin feeding was associated with decreased fibronectin and indirect damage indices (Haematoxylin and Eosin) compared with untreated mdx mice. Dietary quercetin enrichment increased cardiac protein abundance of PGC-1α, cytochrome c, electron transport chain complexes I-V, citrate synthase, superoxide dismutase 2 and glutathione peroxidase (GPX) versus untreated mdx mice. The protein abundance of the inflammatory markers nuclear factor-κB, phosphorylated nuclear factor kappa beta (P-NFκB) and phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (P-IKBα) was decreased by quercetin compared with untreated mdx mice, while preserving nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha( IKBα) compared with mdx mice. Furthermore, quercetin decreased transforming growth factor-ß1, cyclooxygenase-2 (COX2) and macrophage-restricted F4/80 protein (F4/80) versus untreated mdx mice. The data suggest that long-term quercetin enrichment does not impact physiological parameters of cardiac function but improves indices of mitochondrial biogenesis and antioxidant enzymes, facilitates dystrophin-associated glycoprotein complex (DGC) assembly and decreases inflammation in dystrophic hearts.


Assuntos
Cardiotônicos/administração & dosagem , Distrofia Muscular de Duchenne/tratamento farmacológico , Quercetina/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Ciclo-Oxigenase 2/metabolismo , Dieta , Modelos Animais de Doenças , Distrofina/metabolismo , Coração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miocárdio/metabolismo , NF-kappa B/metabolismo , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
6.
Mol Ther ; 25(4): 892-903, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28236574

RESUMO

GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment.


Assuntos
Biomarcadores , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , Terapia Genética , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/urina , Gatos , Dependovirus/classificação , Dependovirus/genética , Modelos Animais de Doenças , Eletroencefalografia , Gangliosidose GM1/mortalidade , Gangliosidose GM1/terapia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Hipocalcemia/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Resultado do Tratamento
7.
Am J Physiol Heart Circ Physiol ; 312(1): H128-H140, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836895

RESUMO

Duchenne Muscular Dystrophy (DMD) is associated with progressive cardiac pathology; however, the SIRT1/PGC1-α activator quercetin may cardioprotect dystrophic hearts. We tested the extent to which long-term 0.2% dietary quercetin enrichment attenuates dystrophic cardiopathology in Mdx/Utrn+/- mice. At 2 mo, Mdx/Utrn+/- mice were fed quercetin-enriched (Mdx/Utrn+/--Q) or control diet (Mdx/Utrn+/-) for 8 mo. Control C57BL/10 (C57) animals were fed a control diet for 10 mo. Cardiac function was quantified by MRI at 2 and 10 mo. Spontaneous physical activity was quantified during the last week of treatment. At 10 mo hearts were excised for histological and biochemical analysis. Quercetin feeding improved various physiological indexes of cardiac function in diseased animals. Mdx/Utrn+/--Q also engaged in more high-intensity physical activity than controls. Histological analyses of heart tissues revealed higher expression and colocalization of utrophin and α-sarcoglycan. Lower abundance of fibronectin, cardiac damage (Hematoxylin Eosin-Y), and MMP9 were observed in quercetin-fed vs. control Mdx/Utrn+/- mice. Quercetin evoked higher protein abundance of PGC-1α, cytochrome c, ETC complexes I-V, citrate synthase, SOD2, and GPX compared with control-fed Mdx/Utrn+/- Quercetin decreased abundance of inflammatory markers including NFκB, TGF-ß1, and F4/80 compared with Mdx/Utrn+/-; however, P-NFκB, P-IKBα, IKBα, CD64, and COX2 were similar between groups. Dietary quercetin enrichment improves cardiac function in aged Mdx/Utrn+/- mice and increases mitochondrial protein content and dystrophin glycoprotein complex formation. Histological analyses indicate a marked attenuation in pathological cardiac remodeling and indicate that long-term quercetin consumption benefits the dystrophic heart. NEW & NOTEWORTHY: The current investigation provides first-time evidence that quercetin provides physiological cardioprotection against dystrophic pathology and is associated with improved spontaneous physical activity. Secondary findings suggest that quercetin-dependent outcomes are in part due to PGC-1α pathway activation.


Assuntos
Antioxidantes/farmacologia , Coração/efeitos dos fármacos , Distrofia Muscular Animal/fisiopatologia , Quercetina/farmacologia , Animais , Antígenos de Diferenciação/efeitos dos fármacos , Antígenos de Diferenciação/metabolismo , Western Blotting , Citrato (si)-Sintase/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocromos c/efeitos dos fármacos , Citocromos c/metabolismo , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fibronectinas/metabolismo , Alimentos Fortificados , Coração/diagnóstico por imagem , Coração/fisiopatologia , Imageamento por Ressonância Magnética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Atividade Motora , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne , Miocárdio/metabolismo , Miocárdio/patologia , Inibidor de NF-kappaB alfa/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Receptores de IgG/efeitos dos fármacos , Receptores de IgG/metabolismo , Sarcoglicanas/metabolismo , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Utrofina/genética , Utrofina/metabolismo
8.
Mol Genet Metab ; 116(1-2): 80-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25971245

RESUMO

Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme ß-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.


Assuntos
Terapia Genética , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/uso terapêutico , Adenoviridae/genética , Estruturas Animais/patologia , Animais , Gatos , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/patologia , Mucopolissacaridoses/terapia , Fenótipo , Doença de Sandhoff/fisiopatologia , Doença de Sandhoff/urina
9.
Sci Transl Med ; 6(231): 231ra48, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24718858

RESUMO

Progressive debilitating neurological defects characterize feline G(M1) gangliosidosis, a lysosomal storage disease caused by deficiency of lysosomal ß-galactosidase. No effective therapy exists for affected children, who often die before age 5 years. An adeno-associated viral vector carrying the therapeutic gene was injected bilaterally into two brain targets (thalamus and deep cerebellar nuclei) of a feline model of G(M1) gangliosidosis. Gene therapy normalized ß-galactosidase activity and storage throughout the brain and spinal cord. The mean survival of 12 treated G(M1) animals was >38 months, compared to 8 months for untreated animals. Seven of the eight treated animals remaining alive demonstrated normalization of disease, with abrogation of many symptoms including gait deficits and postural imbalance. Sustained correction of the G(M1) gangliosidosis disease phenotype after limited intracranial targeting by gene therapy in a large animal model suggests that this approach may be useful for treating the human version of this lysosomal storage disorder.


Assuntos
Encéfalo/patologia , Terapia Genética , Doenças do Sistema Nervoso/terapia , Animais , Cruzamento , Gatos , Dependovirus/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Lisossomos/enzimologia , Imageamento por Ressonância Magnética , Masculino , Especificidade de Órgãos , Análise de Sobrevida , beta-Galactosidase/genética , beta-Galactosidase/uso terapêutico
10.
Circ Cardiovasc Imaging ; 6(3): 478-86, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23536266

RESUMO

BACKGROUND: Cardiac magnetic resonance imaging has not been used previously to document the attenuation of left ventricular (LV) remodeling after systemic gene delivery. We hypothesized that targeted expression of extracellular superoxide dismutase (EcSOD) via the cardiac troponin-T promoter would protect the mouse heart against both myocardial infarction (MI) and subsequent LV remodeling. METHODS AND RESULTS: Using reporter genes, we first compared the specificity, time course, magnitude, and distribution of gene expression from adeno-associated virus (AAV) 1, 2, 6, 8, and 9 after intravenous injection. The troponin-T promoter restricted gene expression largely to the heart for all AAV serotypes tested. AAV1, 6, 8, and 9 provided early-onset gene expression that approached steady-state levels within 2 weeks. Gene expression was highest with AAV9, which required only 3.15×10(11) viral genomes per mouse to achieve an 84% transduction rate. AAV9-mediated, cardiac-selective gene expression elevated EcSOD enzyme activity in heart by 5.6-fold (P=0.015), which helped protect the heart against both acute MI and subsequent LV remodeling. In acute MI, infarct size in EcSOD-treated mice was reduced by 40% compared with controls (P=0.035). In addition, we found that cardiac-selective expression of EcSOD increased myocardial capillary fractional area and decreased neutrophil infiltration after MI. In a separate study of LV remodeling, after a 60-minute coronary occlusion, cardiac magnetic resonance imaging revealed that LV volumes at days 7 and 28 post-MI were significantly lower in the EcSOD group compared with controls. CONCLUSIONS: Cardiac-selective expression of EcSOD from the cardiac troponin-T promoter after systemic administration of AAV9 provides significant protection against both acute MI and LV remodeling.


Assuntos
Dependovirus/enzimologia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Infarto do Miocárdio/terapia , Miocárdio/enzimologia , Superóxido Dismutase/biossíntese , Remodelação Ventricular , Animais , Capilares/patologia , Dependovirus/genética , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Infiltração de Neutrófilos , Regiões Promotoras Genéticas , Superóxido Dismutase/genética , Fatores de Tempo , Troponina T/genética
11.
J Gene Med ; 14(9-10): 609-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23065925

RESUMO

BACKGROUND: Adeno-associated virus serotype 9 (AAV9) vectors provide efficient and uniform gene expression to normal myocardium following systemic administration, with kinetics that approach steady-state within 2-3 weeks. However, as a result of the delayed onset of gene expression, AAV vectors have not previously been administered intravenously after reperfusion for post-infarct gene therapy applications. The present study evaluated the therapeutic potential of post-myocardial infarction gene delivery using intravenous AAV9. METHODS: AAV9 vectors expressing firefly luciferase, enhanced green fluorescent protein (eGFP) or extracellular superoxide dismutase genes from the cardiac troponin-T (cTnT) promoter (AcTnTLuc, AcTnTeGFP, AcTnTEcSOD) were employed. AcTnTLuc was administered intravenously at 10 min and at 1, 2 and 3 days post-ischemia/reperfusion (IR), and the kinetics of luciferase expression were assessed with bioluminescence imaging. AcTnTeGFP was used to evaluate the distribution of eGFP expression. High-resolution echocardiography was used to evaluate the effects of AcTnTEcSOD on left ventricular (LV) remodeling when injected 10 min post-IR. RESULTS: Compared to sham animals, luciferase expression at 2 days after vector administration was elevated by four-, 24-, 210- and 213-fold in groups injected at 10 min, 1 day, 2 days and 3 days post-IR, respectively. The expression of cTnT-driven eGFP was strongest in cardiomyocytes bordering the infarct zone. In the efficacy study of EcSOD, post-infarct LV end-systolic and end-diastolic volumes at days 14 and 28 were significantly smaller in the EcSOD group compared to the control. CONCLUSIONS: Systemic administration of AAV9 vectors after IR both elevates and accelerates gene expression that preferentially targets cardiomyocytes in the border zone with pharmacodynamics suitable for the attenuation of LV remodeling.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacocinética , Infarto do Miocárdio/terapia , Reperfusão Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Remodelação Ventricular/genética , Animais , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Luciferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/terapia , Valores de Referência , Transgenes
12.
Stem Cells ; 25(11): 2936-44, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17690182

RESUMO

Despite rapid advances in the stem cell field, the ability to identify and track transplanted or migrating stem cells in vivo is limited. To overcome this limitation, we used magnetic resonance imaging (MRI) to detect and follow transplanted stem cells over a period of 28 days in mice using an established myocardial infarction model. Pluripotent mouse embryonic stem (mES) cells were expanded and induced to differentiate into beating cardiomyocytes in vitro. The cardiac-differentiated mES cells were then loaded with superparamagnetic fluorescent microspheres (1.63 microm in diameter) and transplanted into ischemic myocardium immediately following ligation and subsequent reperfusion of the left anterior descending coronary artery. To identify the transplanted stem cells in vivo, MRI was performed using a Varian Inova 4.7 Tesla scanner. Our results show that (a) the cardiac-differentiated mES were effectively loaded with superparamagnetic microspheres in vitro, (b) the microsphere-loaded mES cells continued to beat in culture prior to transplantation, (c) the transplanted mES cells were readily detected in the heart in vivo using noninvasive MRI techniques, (d) the transplanted stem cells were detected in ischemic myocardium for the entire 28-day duration of the study as confirmed by MRI and post-mortem histological analyses, and (e) concurrent functional MRI indicated typical loss of cardiac function, although significant amelioration of remodeling was noted after 28 days in hearts that received transplanted stem cells. These results demonstrate that it is feasible to simultaneously track transplanted stem cells and monitor cardiac function in vivo over an extended period using noninvasive MRI techniques.


Assuntos
Células-Tronco Embrionárias/citologia , Imageamento por Ressonância Magnética/métodos , Miócitos Cardíacos/citologia , Animais , Células-Tronco Embrionárias/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/cirurgia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA