Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 15(1): 2229569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37417545

RESUMO

Colorectal cancer (CRC) patients are frequently colonized by colibactin-producing Escherichia coli (CoPEC) (>40%), which enhances tumorigenesis in mouse models of CRC. We observed that 50% of CoPEC also contains the cnf1 gene, which encodes cytotoxic necrotizing factor-1 (CNF1), an enhancer of the eukaryotic cell cycle. The impact of its co-occurrence with colibactin (Clb) has not yet been investigated. We evaluated the impact of CNF1 on colorectal tumorigenesis using human colonic epithelial HT-29 cells and CRC-susceptible ApcMin/+ mice inoculated with the CoPEC 21F8 clinical strain (Clb+Cnf+) or 21F8 isogenic mutants (Clb+Cnf-, Clb-Cnf+ and Clb-Cnf-). Infection with the Clb+Cnf- strain induced higher levels of inflammatory cytokines and senescence markers both in vitro and in vivo compared to those induced by infection with the Clb+Cnf+ strain. In contrast, the Clb+Cnf- and Clb+Cnf+ strains generated similar levels of DNA damage in HT-29 cells and in colonic murine tissues. Furthermore, the ApcMin/+ mice inoculated with the Clb+Cnf- strain developed significantly more tumors than the mice inoculated with the Clb+Cnf+ strain or the isogenic mutants, and the composition of their microbiota was changed. Finally, rectal administration of the CNF1 protein in ApcMin/+ mice inoculated with the Clb+Cnf- strain significantly decreased tumorigenesis and inflammation. Overall, this study provides evidence that CNF1 decreases the carcinogenic effects of CoPEC in ApcMin/+ mice by decreasing CoPEC-induced cellular senescence and inflammation.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Camundongos , Humanos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Colo , Carcinogênese , Transformação Celular Neoplásica , Inflamação
2.
Syst Appl Microbiol ; 43(5): 126124, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847790

RESUMO

Polyphasic taxonomic analysis was performed on a novel bacterium, designated UR159T, isolated in 2016 from human blood of a septic patient hospitalized in France. Preliminary 16S rRNA gene sequence-based phylogenetic analysis indicated that strain UR159T belonged to the family Flavobacteriaceae, forming a distinct phyletic line distantly related (<94% sequence similarity) to known species of the family. Further phenotypic, chemotaxonomic and genomic analyses were performed. Cells were non-motile, oxidase-negative, catalase-positive Gram-negative rods. It was strictly aerobic yielding yellow-pigmented colonies, and was metabolically rather inert. Major fatty acids were iso-branched fatty acids, predominantly iso-C15:0 (55.5%) and iso-C17:1ω9c (8.8%). Whole genome sequencing revealed a 2.3-Mbp genome encoding a total of 2262 putative genes with a genomic DNA G+C content at 37.6mol%. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between strain UR159T and the most closely related members of the Flavobacteriaceae family were <75% and <39%, respectively, much below the established cut-offs for ANI (<95-96%) and isDDH (<70%) for species and genus delineation. Average Amino Acid Identity (AAI) percentages were also estimated and were lower than 65% (cut-off proposed for genus delineation for uncultivated prokaryotes) in all cases, except for F. marinum that was just at the limit (65.1%). Based on these findings, we propose it as a new genus and species, Avrilella dinanensis gen. nov., sp. nov. (type strain UR159T=CIP 111616T=DSM 105483T).


Assuntos
Sangue/microbiologia , Flavobacteriaceae/classificação , Flavobacteriaceae/isolamento & purificação , Sepse/microbiologia , Aerobiose , Idoso de 80 Anos ou mais , Aminoácidos/análise , Composição de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Feminino , Flavobacteriaceae/genética , Flavobacteriaceae/fisiologia , Genes Bacterianos , Genes de RNAr , Genoma Bacteriano , Genômica , Humanos , Fenótipo , Filogenia , Pigmentação , RNA Ribossômico 16S/genética , Sequenciamento Completo do Genoma
4.
J Antimicrob Chemother ; 72(2): 402-406, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27793962

RESUMO

OBJECTIVES: To investigate the resistance mechanisms and genetic support underlying the high resistance level of the Klebsiella pneumoniae strain CMUL78 to aminoglycoside and ß-lactam antibiotics. METHODS: Antibiotic susceptibility was assessed by the disc diffusion method and MICs were determined by the microdilution method. Antibiotic resistance genes and their genetic environment were characterized by PCR and Sanger sequencing. Plasmid contents were analysed in the clinical strain and transconjugants obtained by mating-out assays. Complete plasmid sequencing was performed with PacBio and Illumina technology. RESULTS: Strain CMUL78 co-produced the 16S rRNA methyltransferase (RMTase) RmtH, carbapenemase OXA-48 and ESBL SHV-12. The rmtH- and blaSHV-12-encoding genes were harboured by a novel ∼115 kb IncFIIk plasmid designated pRmtH, and blaOXA-48 by a ∼62 kb IncL/M plasmid related to pOXA-48a. pRmtH plasmid possessed seven different stability modules, one of which is a novel hybrid toxin-antitoxin system. Interestingly, pRmtH plasmid harboured a 4-fold amplification of an rmtH-ISCR2 unit arranged in tandem and inserted within a novel IS26-based composite transposon designated Tn6329. CONCLUSIONS: This is the first known report of the 16S RMTase-encoding gene rmtH in a plasmid. The rmtH-ISCR2 unit was inserted in a composite transposon as a 4-fold tandem repeat, a scarcely reported organization.


Assuntos
Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana , Sequências Repetitivas Dispersas , Klebsiella pneumoniae/efeitos dos fármacos , Metiltransferases/genética , Plasmídeos/análise , beta-Lactamas/farmacologia , Conjugação Genética , DNA Bacteriano/química , DNA Bacteriano/genética , Transferência Genética Horizontal , Humanos , Recém-Nascido , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Plasmídeos/classificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA