Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 281: 130837, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34015650

RESUMO

Phosphate runoff from agriculture fields leads to eutrophication of the water bodies with devastating effects on the aquatic ecosystem. In this study, naturally occurring montmorillonite clay-incorporated iron crosslinked alginate biopolymer (MtIA) beads were synthesized and evaluated for aqueous phosphate removal. Batch experiment data showed an efficient phosphate removal (>99%) by the MtIA beads from solutions with different initial phosphate concentrations (1 and 5 mg PO43--P/L, and 100 µg PO43--P/L). The kinetic data fitted well into the pseudo-second-order kinetic model indicating chemisorption played an important role in phosphate removal. Based on analyses of results from the Elovich and intra-particulate diffusion models, phosphate removal by the MtIA beads was found to be chemisorption where both film diffusion and intra-particulate diffusion participated. The isotherm studies indicate that MtIA surfaces were heterogeneous, and the adsorption capacity of the beads calculated from Langmuir model was 48.7 mg PO43--P/g of dry beads which is ~2.3 times higher than values reported for other clay-metal-alginate beads. Electron microscopy (SEM-EDS) data from the beads showed a rough-textured surface which helped the beads achieve better contact with the phosphate ions. Fourier-transform infrared spectroscopy (FTIR) indicated that both iron and montmorillonite clay participated in crosslinking with the alginate chain. The MtIA beads worked effectively (>98% phosphate removal) over a wide pH range of 2-10 making it a robust adsorbent. The beads can potentially be used for phosphate recovery from eutrophic lakes, agricultural run-off, and municipal wastewater.


Assuntos
Bentonita , Poluentes Químicos da Água , Adsorção , Alginatos , Ecossistema , Concentração de Íons de Hidrogênio , Ferro , Cinética , Fosfatos , Água , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 764: 142914, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127156

RESUMO

Graphene oxide supported magnetite (GM) and graphene oxide supported nanoscale zero-valent iron (GNZVI) nanohybrids were compared for arsenic removal at a wide pH range (3-9). While already published work reported high process efficiency for GM and GNZVI, they cannot be compared one-on-one given the non-identical experimental conditions. Each researcher team used different initial arsenic concentration, solution pH, and adsorbent dose. This study evaluated GM and GNZVI, bare magnetite (M), and bare nanoscale zero-valent iron (NZVI) for aqueous arsenic removal under similar experimental conditions. GNZVI worked more efficiently (>90%) in a wide pH range (3-9) for both As(III) and As(V), while GM was efficient (>90%) only at pH 3 for As(V) and As(III) removal was maximum of ~80% at pH 9. GNZVI also exhibited better aqueous dispersibility with a zeta potential of -21.02 mV compared to other adsorbents in this experiment. The arsenic removal based on normalized iron content indicated that the nanohybrids recorded improved arsenic removal compare to bare nanoparticles, and GNZVI worked the best. In NZVI-based nanomaterials (GNZVI and NZVI), electrostatic attraction played a limited role while surface complexation was dominant in removal of both the arsenic species. In case of M-based nanomaterials (GM and M), As(V) removal was controlled by electrostatic attraction while As(III) adsorption was ligand exchange and surface complexation. GNZVI has the potential for field application for drinking water arsenic removal.

3.
Chemosphere ; 253: 126702, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32302903

RESUMO

Iron (Fe)-based adsorbents have been promoted for aqueous arsenic adsorption because of their low cost and potential ease of scale-up in production. However, their field application is, so far, limited because of their low Fe use efficiency (i.e., not all available Fe is used), slow adsorption kinetics, and low adsorption capacity. In this study, we synthesized graphene oxide iron nanohybrid (GFeN) by decorating iron/iron oxide (Fe/FexOy) core-shell structured iron nanoparticles (FeNPs) on the surface of graphene oxide (GO) via a sol-gel process. The deposition of FeNPs on GO for the nanohybrid (GFeN) improves Fe use efficiency and arsenic mobility in the nanohybrid, thereby improving the arsenic removal capacity and kinetics. We achieved removal capacities of 306 mg/g for As(III) and 431 mg/g for As(V) using GFeN. Rapid reduction (>99% in <10 min) of As(III) and As(V) (initial concentration, C0 = 100 µg/L) was achieved with the nanohybrid (250 mg/L). There were no significant interferences by the coexisting anions and organic matters at environmentally relevant concentrations. Based on the experimental data, we have proposed that both electrostatic interaction and surface complexation contributed to ultra-high arsenic removal by GFeN. The GO sheets acted as the reservoirs for the electrons released during surface corrosion of the FeNPs and the electrons were transferred back to the FeNPs to rejuvenate the oxidized surface. The rejuvenated FeNP surface layer helped in additional arsenic removal.


Assuntos
Arsênio/química , Poluentes Químicos da Água/química , Adsorção , Ânions , Arsênio/análise , Compostos Férricos/química , Grafite/química , Concentração de Íons de Hidrogênio , Ferro , Cinética , Nanopartículas , Oxirredução , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
4.
Environ Monit Assess ; 192(2): 110, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31938851

RESUMO

Arsenic removal by nanoscale zero-valent iron (NZVI) was modeled using the USGS geochemical program PHREEQC. The Dzombak and Morel adsorption model was used. The adsorption of As(V) onto NZVI was assumed to happen because of the hydrous ferric oxide (Hfo) which was the surface oxide for the model. The model predicted results were compared with the experimental data. While the experimental study reported that 99.57% arsenic removal by NZVI, the model predicted 99.82% removal which is about 0.25% variation. All the arsenic species have also been predicted to be significantly removed by adsorption onto NZVI surface. The effect of pH on As(V) removal efficiency was also evaluated using the model and it was found that above point-of-zero-charge (PZC), the adsorption of As(V) decreases with the increase of pH. The authors conclude that PHREEQC can be used to model contaminant adsorption by nanomaterials.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Arsênio/química , Arsênio/isolamento & purificação , Monitoramento Ambiental , Ferro , Modelos Teóricos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
5.
MethodsX ; 6: 1181-1187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31193529

RESUMO

Modified protocols were adapted for PCR and culture based methods for the analysis of Pseudomonas fluorescens cells exposed to nanoscale zero-valent iron (NZVI) and iron (Fe) in bacterial growth nutrient media was determined by a modified atomic absorption spectrometric (AAS) analysis method. We adapted sets of microarray primers used to quantify gene expression of pvdS and a bacterioferritin-associated ferredoxin gene for use in real-time quantitative reverse transcription (qRT-PCR) analysis. pvdS is one of a cluster of genes regulating the synthesis of the siderophore pyoverdine that was also measured using chrome azrul S (CAS) plates. •The current protocol provides a detailed qRT-PCR method for quantifying genes involved in the acquisition and utilization of Fe in P. fluorescens cells exposed to NZVI.•The qRT-PCR results were independently corroborated with 2 culture based methods, growth curves and chrome azurol S (CAS) plate.•The modified AAS method was used to measure Fe in Tryptic Soy Broth (TSB) medium where sodium (Na) causes inference in iron measurement.

6.
Environ Sci Technol ; 46(18): 10130-6, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22731979

RESUMO

Amphiphilic polysiloxane graft copolymers (APGCs) were used as a delivery vehicle for nanoscale zerovalent iron (NZVI). The APGCs were designed to enable adsorption onto NZVI surfaces via carboxylic acid anchoring groups and polyethylene glycol (PEG) grafts were used to provide dispersibility in water. Degradation studies were conducted with trichloroethylene (TCE) as the model contaminant. TCE degradation rate with APGC-coated NZVI (CNZVI) was determined to be higher as compared to bare NZVI. The surface normalized degradation rate constants, k(SA) (Lm(2-) h(-1)), for TCE removal by CNZVI and bare NZVI ranged from 0.008 to 0.0760 to 007-0.016, respectively. Shelf life studies conducted over 12 months to access colloidal stability and 6 months to access TCE degradation indicated that colloidal stability and chemical reactivity of CNZVI remained more or less unchanged. The sedimentation characteristics of CNZVI under different ionic strength conditions (0-10 mM) did not change significantly. The steric nature of particle stabilization is expected to improve aquifer injection efficiency of the coated NZVI for groundwater remediation.


Assuntos
Recuperação e Remediação Ambiental/métodos , Ferro/administração & dosagem , Nanopartículas/administração & dosagem , Siloxanas/química , Tensoativos/química , Tricloroetileno/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Coloides/química , Ferro/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Concentração Osmolar , Solubilidade , Água/análise
7.
J Hazard Mater ; 166(2-3): 1339-43, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19178997

RESUMO

Zero-valent iron nanoparticles (nZVI) have been successfully entrapped in biopolymer, calcium (Ca)-alginate beads. The study has demonstrated the potential use of this technique in environmental remediation using nitrate as a model contaminant. Ca-alginate beads show promise as an entrapment medium for nZVI for possible use in groundwater remediation. Based on scanning electron microscopy images it can be inferred that the alginate gel cluster acts as a bridge that binds the nZVI particles together. Kinetic experiments with 100, 60, and 20mg NO(3)(-)-NL(-1) indicate that 50-73% nitrate-N removal was achieved with entrapped nZVI as compared to 55-73% with bare nZVI over a 2-h period. The controls ran simultaneously show little NO(3)(-)-N removal. Statistical analysis indicates that there was no significant difference between the reaction rates of bare and entrapped nZVI. The authors have shown for the first time that nZVI can be effectively entrapped in Ca-alginate beads and no significant decrease in the reactivity of nZVI toward the model contaminant (nitrate here) was observed after the entrapment.


Assuntos
Alginatos/química , Recuperação e Remediação Ambiental/métodos , Ferro/química , Nitratos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Cálcio , Nanopartículas Metálicas/química , Microesferas , Purificação da Água/métodos
8.
J Environ Sci Health B ; 44(6): 518-24, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20183057

RESUMO

Zero-valent iron nanoparticles (nZVI, diameter < 90 nm, specific surface area = 25 m(2) g(-1)) have been used under anoxic conditions for the remediation of pesticides alachlor and atrazine in water. While alachlor (10, 20, 40 mg L(-1)) was reduced by 92-96% within 72 h, no degradation of atrazine was observed. The alachlor degradation reaction was found to obey first-order kinetics very closely. The reaction rate (35.5 x 10(-3)-43.0 x 10(-3) h(-1)) increased with increasing alachlor concentration. The results are in conformity with other researchers who worked on these pesticides but mostly with micro ZVI and iron filings. This is for the first time that alachlor has been degraded under reductive environment using nZVI. The authors contend that nZVI may prove to be a simple method for on-site treatment of high concentration pesticide rinse water (100 mg L(-1)) and for use in flooring materials in pesticide filling and storage stations.


Assuntos
Acetamidas/isolamento & purificação , Atrazina/isolamento & purificação , Recuperação e Remediação Ambiental/métodos , Herbicidas/isolamento & purificação , Ferro/química , Nanopartículas Metálicas/química , Poluentes Químicos da Água/isolamento & purificação , Acetamidas/química , Atrazina/química , Herbicidas/química , Cinética , Oxirredução , Poluentes Químicos da Água/química
9.
Water Sci Technol ; 58(11): 2215-22, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19092199

RESUMO

Zero-valent iron nanoparticles (nZVI) were successfully entrapped in calcium alginate beads. The potential use of this technique in environmental remediation using nitrate as a model contaminant was investigated. Kinetics of nitrate degradation using bare nZVI (approximately 35 nm dia) and entrapped nZVI were compared. Calcium alginate beads show promise as the entrapment medium for nZVI for possible use in permeable reactive barriers for groundwater remediation. Based on scanning electron microscopy images it can be inferred that the alginate gel cluster acts as a bridge that binds the nZVI particles together. Kinetic experiments with 100, 60, and 20 mg NO3--N L(-1) indicate that 50-73% nitrate-N removal was achieved with entrapped nZVI as compared to 55-73% with bare nZVI over a 2 h period. The controls ran simultaneously show little or no NO3--N removal. Statistical analysis indicates that there was no significant difference between the reaction rates of bare and entrapped nZVI. The authors have shown for the first time that nZVI can be effectively entrapped in Ca-alginate beads and no significant decrease in the reactivity of nZVI toward the model contaminant (nitrate here) was observed after the entrapment.


Assuntos
Alginatos/química , Ferro/química , Nanopartículas Metálicas/química , Nitratos/isolamento & purificação , Alginatos/ultraestrutura , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Cinética , Nanopartículas Metálicas/ultraestrutura , Microesferas , Oxirredução , Tamanho da Partícula , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA