Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 56(9): 2016-2032, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39218980

RESUMO

Micronuclei (MN) can form through many mechanisms, including the breakage of aberrant cytokinetic chromatin bridges. The frequent observation of MN in tumors suggests that they might not merely be passive elements but could instead play active roles in tumor progression. Here, we propose a mechanism through which the presence of micronuclei could induce specific phenotypic and functional changes in cells and increase the invasive potential of cancer cells. Through the integration of diverse in vitro imaging and molecular techniques supported by clinical samples from patients with prostate cancer (PCa) defined as high-risk by the D'Amico classification, we demonstrate that the resolution of chromosome bridges can result in the accumulation of Emerin and the formation of Emerin-rich MN. These structures are negative for Lamin A/C and positive for the Lamin-B receptor and Sec61ß. MN can act as a protein sinks and result in the pauperization of Emerin from the nuclear envelope. The Emerin mislocalization phenotype is associated with a molecular signature that is correlated with a poor prognosis in PCa patients and is enriched in metastatic samples. Emerin mislocalization corresponds with increases in the migratory and invasive potential of tumor cells, especially in a collagen-rich microenvironment. Our study demonstrates that the mislocalization of Emerin to MN results in increased cell invasiveness, thereby worsening patient prognosis.


Assuntos
Cromatina , Colágeno , Proteínas de Membrana , Invasividade Neoplásica , Proteínas Nucleares , Neoplasias da Próstata , Microambiente Tumoral , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Cromatina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Linhagem Celular Tumoral , Colágeno/metabolismo , Membrana Nuclear/metabolismo , Micronúcleos com Defeito Cromossômico , Movimento Celular
2.
Science ; 385(6712): eadj7446, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39208097

RESUMO

Chromosomal instability (CIN) generates micronuclei-aberrant extranuclear structures that catalyze the acquisition of complex chromosomal rearrangements present in cancer. Micronuclei are characterized by persistent DNA damage and catastrophic nuclear envelope collapse, which exposes DNA to the cytoplasm. We found that the autophagic receptor p62/SQSTM1 modulates micronuclear stability, influencing chromosome fragmentation and rearrangements. Mechanistically, proximity of micronuclei to mitochondria led to oxidation-driven homo-oligomerization of p62, limiting endosomal sorting complex required for transport (ESCRT)-dependent micronuclear envelope repair by triggering autophagic degradation. We also found that p62 levels correlate with increased chromothripsis across human cancer cell lines and with increased CIN in colorectal tumors. Thus, p62 acts as a regulator of micronuclei and may serve as a prognostic marker for tumors with high CIN.


Assuntos
Autofagia , Instabilidade Cromossômica , Cromotripsia , Neoplasias Colorretais , Micronúcleos com Defeito Cromossômico , Proteína Sequestossoma-1 , Humanos , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Membrana Nuclear/metabolismo
3.
Cell Rep ; 42(12): 113555, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38088930

RESUMO

Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.


Assuntos
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cromatina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Dano ao DNA , Citoesqueleto/metabolismo
5.
Nat Mater ; 22(5): 644-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36581770

RESUMO

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Assuntos
Actinas , Neoplasias , DNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , Transdução de Sinais
8.
Small ; 18(17): e2106097, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35344274

RESUMO

Circulating tumor cell (CTC) clusters are associated with increased metastatic potential and worse patient prognosis, but are rare, difficult to count, and poorly characterized biophysically. The PillarX device described here is a bimodular microfluidic device (Pillar-device and an X-magnetic device) to profile single CTCs and clusters from whole blood based on their size, deformability, and epithelial marker expression. Larger, less deformable clusters and large single cells are captured in the Pillar-device and sorted according to pillar gap sizes. Smaller, deformable clusters and single cells are subsequently captured in the X-device and separated based on epithelial marker expression using functionalized magnetic nanoparticles. Clusters of established and primary breast cancer cells with variable degrees of cohesion driven by different cell-cell adhesion protein expression are profiled in the device. Cohesive clusters exhibit a lower deformability as they travel through the pillar array, relative to less cohesive clusters, and have greater collective invasive behavior. The ability of the PillarX device to capture clusters is validated in mouse models and patients of metastatic breast cancer. Thus, this device effectively enumerates and profiles CTC clusters based on their unique geometrical, physical, and biochemical properties, and could form the basis of a novel prognostic clinical tool.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Separação Celular , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Camundongos , Células Neoplásicas Circulantes/patologia , Prognóstico
9.
Neuro Oncol ; 24(2): 184-196, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581817

RESUMO

Glioblastoma (GBM) represents the most aggressive and lethal disease of the central nervous system. Diagnosis is delayed following the occurrence of symptoms, and treatment is based on standardized approaches that are unable to cope with its heterogeneity, mutability, and invasiveness. The follow-up of patients relies on burdensome schedules for magnetic resonance imaging (MRI). However, to personalize treatment, biomarkers and liquid biopsy still represent unmet clinical needs. Extracellular vesicles (EVs) may be the key to revolutionize the entire process of care for patients with GBM. EVs can be collected noninvasively (eg, blood) and impressively possess multilayered information, which is constituted by their concentration and molecular cargo. EV-based liquid biopsy may facilitate GBM diagnosis and enable the implementation of personalized treatment, resulting in customized care for each patient and for each analyzed time point of the disease, thereby tackling the distinctive heterogeneity and mutability of GBM that confounds effective treatment. Herein, we discuss the limitations of current GBM treatment options and the rationale behind the need for personalized care. We also review the evidence supporting GBM-associated EVs as a promising tool capable of fulfilling the still unmet clinical need for effective and timely personalized care of patients with GBM.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Biomarcadores , Neoplasias Encefálicas/patologia , Vesículas Extracelulares/patologia , Glioblastoma/patologia , Humanos , Biópsia Líquida , Medicina de Precisão
11.
Nat Commun ; 11(1): 4828, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973141

RESUMO

ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Núcleo Celular/metabolismo , Estresse Mecânico , Citoesqueleto de Actina , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Encéfalo , Cromatina , Citoplasma , Citoesqueleto/metabolismo , Dano ao DNA , Camundongos Knockout , Metástase Neoplásica , Neurogênese , Membrana Nuclear/metabolismo
12.
Nat Commun ; 11(1): 3945, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770028

RESUMO

TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading to enhanced vesicular trafficking and secretion. The mut-p53/HIF1α/miR-30d axis potentiates the release of soluble factors and the deposition and remodeling of the ECM, affecting mechano-signaling and stromal cells activation within the tumor microenvironment, thereby enhancing tumor growth and metastatic colonization.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Complexo de Golgi/patologia , Síndrome de Li-Fraumeni/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Biópsia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Feminino , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Complexo de Golgi/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Síndrome de Li-Fraumeni/patologia , Camundongos , Microtúbulos/metabolismo , Microtúbulos/patologia , Mutação , Cultura Primária de Células , Vesículas Secretórias/metabolismo , Vesículas Secretórias/patologia , Transdução de Sinais/genética , Pele/citologia , Pele/patologia , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Commun ; 11(1): 3516, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665580

RESUMO

It is unclear whether the establishment of apical-basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. Genetic removal of IRSp53 results in abnormal renal tubulogenesis, with altered tubular polarity and architectural organization. Thus, IRSp53 acts as a membrane curvature-sensing platform for the assembly of multi-protein complexes that control the trafficking of apical determinants and the integrity of the luminal plasma membrane.


Assuntos
Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Actinas/metabolismo , Polaridade Celular/genética , Polaridade Celular/fisiologia , Células Epiteliais/metabolismo , Feminino , Humanos , Morfogênese/genética , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Proteínas rab de Ligação ao GTP/genética
14.
Circ Res ; 127(8): 1056-1073, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32673519

RESUMO

RATIONALE: Intercellular tight junctions are crucial for correct regulation of the endothelial barrier. Their composition and integrity are affected in pathological contexts, such as inflammation and tumor growth. JAM-A (junctional adhesion molecule A) is a transmembrane component of tight junctions with a role in maintenance of endothelial barrier function, although how this is accomplished remains elusive. OBJECTIVE: We aimed to understand the molecular mechanisms through which JAM-A expression regulates tight junction organization to control endothelial permeability, with potential implications under pathological conditions. METHODS AND RESULTS: Genetic deletion of JAM-A in mice significantly increased vascular permeability. This was associated with significantly decreased expression of claudin-5 in the vasculature of various tissues, including brain and lung. We observed that C/EBP-α (CCAAT/enhancer-binding protein-α) can act as a transcription factor to trigger the expression of claudin-5 downstream of JAM-A, to thus enhance vascular barrier function. Accordingly, gain-of-function for C/EBP-α increased claudin-5 expression and decreased endothelial permeability, as measured by the passage of fluorescein isothiocyanate (FITC)-dextran through endothelial monolayers. Conversely, C/EBP-α loss-of-function showed the opposite effects of decreased claudin-5 levels and increased endothelial permeability. Mechanistically, JAM-A promoted C/EBP-α expression through suppression of ß-catenin transcriptional activity, and also through activation of EPAC (exchange protein directly activated by cAMP). C/EBP-α then directly binds the promoter of claudin-5 to thereby promote its transcription. Finally, JAM-A-C/EBP-α-mediated regulation of claudin-5 was lost in blood vessels from tissue biopsies from patients with glioblastoma and ovarian cancer. CONCLUSIONS: We describe here a novel role for the transcription factor C/EBP-α that is positively modulated by JAM-A, a component of tight junctions that acts through EPAC to up-regulate the expression of claudin-5, to thus decrease endothelial permeability. Overall, these data unravel a regulatory molecular pathway through which tight junctions limit vascular permeability. This will help in the identification of further therapeutic targets for diseases associated with endothelial barrier dysfunction. Graphic Abstract: An graphic abstract is available for this article.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Permeabilidade Capilar , Moléculas de Adesão Celular/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Receptores de Superfície Celular/metabolismo , Junções Íntimas/metabolismo , Adulto , Idoso , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Claudina-5/genética , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Patológica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Receptores de Superfície Celular/genética , Transdução de Sinais , Junções Íntimas/genética , Regulação para Cima
15.
Nat Mater ; 18(11): 1252-1263, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31332337

RESUMO

During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effects with striking biophysical consequences. Specifically, unjamming in tumour spheroids is accompanied by persistent and coordinated rotations that progressively remodel the extracellular matrix, while simultaneously fluidizing cells at the periphery. This concurrent action results in collective invasion, supporting the concept that the endo-ERK1/2 pathway is a physicochemical switch to initiate collective invasion and dissemination of otherwise jammed carcinoma.


Assuntos
Diferenciação Celular , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/metabolismo , Humanos , Cinética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
16.
Life Sci Alliance ; 2(1)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30692166

RESUMO

EPS15 and its homologous EPS15L1 are endocytic accessory proteins. Studies in mammalian cell lines suggested that EPS15 and EPS15L1 regulate endocytosis in a redundant manner. However, at the organismal level, it is not known to which extent the functions of the two proteins overlap. Here, by exploiting various constitutive and conditional null mice, we report redundant and nonredundant functions of the two proteins. EPS15L1 displays a unique nonredundant role in the nervous system, whereas both proteins are fundamental during embryo development as shown by the embryonic lethality of -Eps15/Eps15L1-double KO mice. At the cellular level, the major process redundantly regulated by EPS15 and EPS15L1 is the endocytosis of the transferrin receptor, a pathway that sustains the development of red blood cells and controls iron homeostasis. Consequently, hematopoietic-specific conditional Eps15/Eps15L1-double KO mice display traits of microcytic hypochromic anemia, due to a cell-autonomous defect in iron internalization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endocitose/fisiologia , Anemia Hipocrômica/genética , Animais , Escala de Avaliação Comportamental , Desenvolvimento Embrionário/fisiologia , Eritrócitos/metabolismo , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Genes Letais/fisiologia , Hipocampo/citologia , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Receptores da Transferrina/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Sinapses/metabolismo
17.
Clin Cancer Res ; 25(1): 266-276, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30287549

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common primary brain tumor. The identification of blood biomarkers reflecting the tumor status represents a major unmet need for optimal clinical management of patients with GBM. Their high number in body fluids, their stability, and the presence of many tumor-associated proteins and RNAs make extracellular vesicles potentially optimal biomarkers. Here, we investigated the potential role of plasma extracellular vesicles from patients with GBM for diagnosis and follow-up after treatment and as a prognostic tool. EXPERIMENTAL DESIGN: Plasma from healthy controls (n = 33), patients with GBM (n = 43), and patients with different central nervous system malignancies (n = 25) were collected. Extracellular vesicles were isolated by ultracentrifugation and characterized in terms of morphology by transmission electron microscopy, concentration, and size by nanoparticle tracking analysis, and protein composition by mass spectrometry. An orthotopic mouse model of human GBM confirmed human plasma extracellular vesicle quantifications. Associations between plasma extracellular vesicle concentration and clinicopathologic features of patients with GBM were analyzed. All statistical tests were two-sided. RESULTS: GBM releases heterogeneous extracellular vesicles detectable in plasma. Plasma extracellular vesicle concentration was higher in GBM compared with healthy controls (P < 0.001), brain metastases (P < 0.001), and extra-axial brain tumors (P < 0.001). After surgery, a significant drop in plasma extracellular vesicle concentration was measured (P < 0.001). Plasma extracellular vesicle concentration was also increased in GBM-bearing mice (P < 0.001). Proteomic profiling revealed a GBM-distinctive signature. CONCLUSIONS: Higher extracellular vesicle plasma levels may assist in GBM clinical diagnosis: their reduction after GBM resection, their rise at recurrence, and their protein cargo might provide indications about tumor, therapy response, and monitoring.


Assuntos
Glioblastoma/sangue , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/genética , Prognóstico , Animais , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Vesículas Extracelulares/ultraestrutura , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Microscopia Eletrônica , Recidiva Local de Neoplasia/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Proteoma/genética
18.
Nanoscale ; 10(47): 22420-22428, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30475372

RESUMO

Diagnosis and treatment of brain disorders, such as epilepsy, neurodegenerative diseases and tumors, would benefit from innovative approaches to deliver therapeutic or diagnostic compounds into the brain parenchyma, with either a homogeneous or a targeted localized distribution pattern. To assess the mechanistic aspect of penetration of nanoparticles (NPs) into the brain parenchyma, a complex, yet controlled and facilitated environment was used: the isolated guinea pig brain maintained in vitro by arterial perfusion. In this unique preparation the blood-brain barrier and the interactions between vascular and neuronal compartments are morphologically and functionally preserved. In this study, superparamagnetic Au/Fe nanoparticles (MUS:OT Au/Fe NPs), recently studied as a promising magnetic resonance T2 contrast agent with high cellular penetration, were arterially perfused into the in vitro isolated brain and showed high and homogeneous penetration through transcytosis into the brain parenchyma. Ultramicroscopy investigation of the in vitro isolated brain sections by TEM analysis of the electron-dense core of the MUS:OT Au/Fe NPs was conducted to understand NPs' brain penetration through the BBB after in vitro arterial perfusion and their distribution in the parenchyma. Our data suggest that MUS:OT Au/Fe NPs enter the brain utilizing a physiological route and therefore can be exploited as brain penetrating nanomaterials with potential contrast agent and theranostics capabilities.


Assuntos
Encéfalo/metabolismo , Meios de Contraste/química , Ouro/química , Ferro/química , Nanopartículas de Magnetita/química , Nanopartículas Metálicas/química , Animais , Transporte Biológico , Barreira Hematoencefálica , Difusão , Sistemas de Liberação de Medicamentos , Cobaias , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Neurônios/metabolismo , Perfusão , Ratos , Ratos Sprague-Dawley , Nanomedicina Teranóstica
19.
Nucleic Acids Res ; 46(15): 7586-7611, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30011030

RESUMO

The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis. Likewise, RIOK1 promotes 40S ribosomal subunit biogenesis and has not been characterized globally. We show that Rio1 manages directly and via a series of regulators, an essential signaling network at the protein, chromatin and RNA levels. Rio1 orchestrates growth and division depending on resource availability, in parallel to the nutrient-activated Tor1 kinase. To define the Rio1 network, we identified its physical interactors, profiled its target genes/transcripts, mapped its chromatin-binding sites and integrated our data with yeast's protein-protein and protein-DNA interaction catalogs using network computation. We experimentally confirmed network components and localized Rio1 also to mitochondria and vacuoles. Via its network, Rio1 commands protein synthesis (ribosomal gene expression, assembly and activity) and turnover (26S proteasome expression), and impinges on metabolic, energy-production and cell-cycle programs. We find that Rio1 activity is conserved to humans and propose that pathological RIOK1 may fuel promiscuous transcription, ribosome production, chromosomal instability, unrestrained metabolism and proliferation; established contributors to cancer. Our study will advance the understanding of numerous processes, here revealed to depend on Rio1 activity.


Assuntos
Ciclo Celular/genética , Metabolismo Energético/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Segregação de Cromossomos/genética , Mitocôndrias/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Fúngico/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Transcrição Gênica/genética
20.
J Exp Clin Cancer Res ; 36(1): 16, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28114961

RESUMO

BACKGROUND: Strategies aimed at obtaining a complete cytoreduction are needed to improve long-term survival for patients with colorectal cancer peritoneal carcinomatosis (CRC-pc). METHODS: We established organoid models from peritoneal metastases of two naïve CRC patients. A standard paraffin inclusion was conducted to compare their 3D structure and immunohistochemical profile with that of the corresponding surgical samples. RNA expression levels of the CRC stem cell marker LGR5 was measured by in situ hybridization. The secretome of organoids was profiled by mass spectrometry. Energy homeostasis of organoids was interfered with 4-IPP and metformin. Biochemical and metabolic changes after drug treatments were investigated by western blot and mass spectrometry. Mitochondria impairment was evaluated by electron microscopy and mitotraker staining. RESULTS: The two organoids recapitulated their corresponding clinical samples in terms of 3D structure and immmunoistochemical profile and were positive for the cancer stem cells marker LGR5. Proteomic analyses of organoids highlighted their strong dependence on energy producing pathways, which suggest that their targeting could be an effective therapeutic approach. To test this hypothesis, we treated organoids with two drugs that target metabolism acting on AMP-activated protein kinase (AMPK), the main regulator of cellular energy homeostasis, which may act as metabolic tumour suppressor in CRC. Organoids were treated with 4-IPP, an inhibitor of MIF/CD74 signalling axis which activates AMPK function, or metformin that inhibits mitochondrial respiratory chain complex I. As a new finding we observed that treatment with 4-IPP downregulated AMPK signalling activity, reduced AKT phosphorylation and activated a JNK-mediated stress-signalling response, thus generating mitochondrial impairment and cell death. Metformin treatment enhanced AMPK activation, decreasing the activity of the anabolic factors ribosomal protein S6 and p4EBP-1 and inducing mitochondrial depolarization. CONCLUSION: We provide evidence that the modulation of AMPK activity may be a strategy for targeting metabolism of CRC-pc organoids.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Neoplasias do Colo/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Metformina/farmacologia , Neoplasias Peritoneais/secundário , Pirimidinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Metabolismo Energético/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/genética , Proteômica , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA