Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comb Chem High Throughput Screen ; 22(6): 400-410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31573876

RESUMO

INTRODUCTION: A variety of organic compounds has been reported to have antibacterial activity. However, antimicrobial resistance is one of the main problems of current anti-infective therapy, and the development of novel antibacterials is one of the main challenges of current drug discovery. METHODS: Using our previously developed dual-reporter High-Throughput Screening (HTS) platform, we identified a series of furanocoumarins as having high antibacterial activity. The construction of the reporter system allows us to differentiate three mechanisms of action for the active compounds: inhibition of protein synthesis (induction of Katushka2S), DNA damaging (induction of RFP) or other (inhibition of bacterial growth without reporter induction). RESULTS: Two primary hit-molecules of furanocoumarin series demonstrated relatively low MIC values comparable to that observed for Erythromycin (Ery) against E. coli and weakly induced both reporters. Dose-dependent translation inhibition was shown using in vitro luciferase assay, however it was not confirmed using C14-test. A series of close structure analogs of the identified hits was obtained and investigated using the same screening platform. Compound 19 was found to have slightly lower MIC value (15.18 µM) and higher induction of Katushka2S reporter in contrast to the parent structures. Moreover, translation blockage was clearly identified using both in vitro luciferase assay and C14 test. The standard cytotoxicity test revealed a relatively low cytotoxicity of the most active molecules. CONCLUSION: High antibacterial activity in combination with low cytotoxicity was demonstrated for a series of furanocoumarins. Further optimization of the described structures may result in novel and attractive lead compounds with promising antibacterial efficiency.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Furocumarinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Células A549 , Antibacterianos/química , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Furocumarinas/química , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
2.
J Antibiot (Tokyo) ; 72(11): 827-833, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31358913

RESUMO

The present report describes our efforts to identify new structural classes of compounds having promising antibacterial activity using previously published double-reporter system pDualrep2. This semi-automated high-throughput screening (HTS) platform has been applied to perform a large-scale screen of a diverse small-molecule compound library. We have selected a set of more than 125,000 molecules and evaluated them for their antibacterial activity. On the basis of HTS results, eight compounds containing 2-pyrazol-1-yl-thiazole scaffold exhibited moderate-to-high activity against ΔTolC Escherichia coli. Minimum inhibitory concentration (MIC) values for these molecules were in the range of 0.037-8 µg ml-1. The most active compound 8 demonstrated high antibacterial potency (MIC = 0.037 µg ml-1), that significantly exceed that measured for erythromycin (MIC = 2.5 µg ml-1) and was comparable with the activity of levofloxacin (MIC = 0.016 µg ml-1). Unfortunately, this compound showed only moderate selectivity toward HEK293 eukaryotic cell line. On the contrary, compound 7 was less potent (MIC = 0.8 µg ml-1) but displayed only slight cytotoxicity. Thus, 2-pyrazol-1-yl-thiazoles can be considered as a valuable starting point for subsequent optimization and morphing.


Assuntos
Antibacterianos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Tiazóis/farmacologia , Antibacterianos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tiazóis/química
3.
Bioorg Med Chem Lett ; 29(10): 1246-1255, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30904185

RESUMO

Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), has recently emerged as a prominent biomarker of prostate cancer (PC) and as an attractive protein trap for drug targeting. At the present time, several drugs and molecular diagnostic tools conjugated with selective PSMA ligands are actively evaluated in different preclinical and clinical trials. In the current work, we discuss design, synthesis and a preliminary biological evaluation of PSMA-specific small-molecule carrier equipped by Doxorubicin (Dox). We have introduced an unstable azo-linker between Dox and the carrier hence the designed compound does release the active substance inside cancer cells thereby providing a relatively high Dox concentration in nuclei and a relevant cytotoxic effect. In contrast, we have also synthesized a similar conjugate with a stable amide linker and it did not release the drug at all. This compound was predominantly accumulated in cytoplasm and did not cause cell death. Preliminary in vivo evaluation has showed good efficiency for the degradable conjugate against PC3-PIP(PSMA+)-containing xenograft mine. Thus, we have demonstrated that the conjugate can be used as a template to design novel analogues with improved targeting, anticancer activity and lower rate of potential side effects. 3D molecular docking study has also been performed to elucidate the underlying mechanism of binding and to further optimization of the linker area for improving the target affinity.


Assuntos
Antígenos de Superfície/química , Antineoplásicos/síntese química , Doxorrubicina/química , Glutamato Carboxipeptidase II/química , Animais , Antígenos de Superfície/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Neoplasias da Próstata/tratamento farmacológico , Estrutura Terciária de Proteína , Transplante Heterólogo
4.
Bioorg Med Chem ; 24(4): 802-11, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26780833

RESUMO

A set of novel selenohydantoins were synthesized via a convenient and versatile approach involving the reaction of isoselenocyanates with various amines. We also revealed an unexpected Z→E isomerization of pyridin-2-yl-substituted selenohydantoins in the presence of Cu(2+) cations. The detailed mechanism of this transformation was suggested on the basis of quantum-chemical calculations, and the key role of Cu(2+) was elucidated. The obtained compounds were subsequently evaluated against a panel of different cancer cell lines. As a result, several molecules were identified as promising micromolar hits with good selectivity index. Instead of analogous thiohydantoins, which have been synthesized previously, selenohydantoins demonstrated a relatively high antioxidant activity comparable (or greater) to the reference molecule, Ebselen, a clinically approved drug candidate. The most active compounds have been selected for further biological trials.


Assuntos
Antineoplásicos/síntese química , Antioxidantes/síntese química , Hidantoínas/síntese química , Compostos Organosselênicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Azóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cianatos/química , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa Peroxidase/antagonistas & inibidores , Glutationa Peroxidase/química , Humanos , Hidantoínas/farmacologia , Concentração Inibidora 50 , Isoindóis , Compostos Organosselênicos/farmacologia , Piridinas/química , Teoria Quântica , Estereoisomerismo , Relação Estrutura-Atividade
5.
J Chem Phys ; 136(21): 214304, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22697540

RESUMO

Potential energy curves of the lowest electronic states of the Ni(2) dimer are calculated near the equilibrium using the multireference ab initio methods including the spin-orbit interaction. Scalar-relativistic results fully confirm previous qualitative interpretations based on the correlation with atomic limits and the symmetry of vacancies in the atomic 3d(9) shells. Spin-orbit calculations firmly establish the symmetry of the ground state as 0(+)(g) and give the excitation energies 70 ± 30 cm(-1) and 200 ± 80 cm(-1) for the lowest 0(-)(u) and 5(u) states, respectively. The model electronic spectrum of the Ni(2) shows some trends that might be observed in matrix isolation far-infrared and electron spin resonance spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA