Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(17): 4248-4261, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602387

RESUMO

Prolonged use of very commonly prescribed non-steroidal anti-inflammatory drugs (NSAIDs) is often associated with undesired side effects, including gastrointestinal ulcers due to the non-selective inhibition of cyclooxygenases. We describe the development of an inflammatory-stimuli-responsive turn-on fluorogenic theranostic prodrug DCF-HS for adjuvant drug delivery. Upon activation by reactive oxygen species (ROS), the prodrug releases diclofenac DCF (active drug) and the NIR fluorophore DCI-NH2 along with carbonyl sulfide (COS). The second activation of COS by the enzyme carbonic anhydrase (CA) generates hydrogen sulfide (H2S). The prodrug was conveniently synthesized using multi-step organic synthesis. The UV-Vis and fluorescence studies revealed the selective reactivity of DCF-HS towards ROS such as H2O2 in the aqueous phase and the desired uncaging of the drug DCF with turn-on NIR fluorescent reporter under physiological conditions. Furthermore, the release of fluorophore DCI-NH2 and drug DCF was confirmed using the reverse phase HPLC method. Compatibility of prodrug activation was studied next in the cellular medium. The prodrug DCF-HS was non-toxic in a representative cancer cell line (HeLa) and a macrophage cell line (RAW 264.7) up to 100 µM concentration, indicating its biocompatibility. The intracellular ROS-mediated activation of the prodrug with the release of NIR dye DCI-NH2 and H2S was investigated in HeLa cells using the H2S-selective probe WSP2. The anti-inflammatory activity of the active drug DCF from the prodrug DCF-HS was studied in the lipopolysaccharide (LPS)-induced macrophage cell line and compared to that of the parent drug DCF using western blot analysis and it was found that the active drug resulted in pronounced inhibition of COX-2 in a dose-dependent manner. Finally, the anti-inflammatory potential of the prodrug and the turn-on fluorescence were validated in the inflammation-induced Wister rat models.


Assuntos
Anti-Inflamatórios não Esteroides , Diclofenaco , Sulfeto de Hidrogênio , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química , Sulfeto de Hidrogênio/metabolismo , Animais , Humanos , Diclofenaco/farmacologia , Células HeLa , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Ratos , Nanomedicina Teranóstica , Inflamação/tratamento farmacológico , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/síntese química , Camundongos , Células RAW 264.7 , Sistemas de Liberação de Medicamentos , Edema/tratamento farmacológico , Edema/induzido quimicamente
2.
Chem Commun (Camb) ; 60(25): 3397-3400, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38404238

RESUMO

Biothiol-activatable prodrug RK-296 was designed for the delivery of potent anti-cancer agent NBDHEX with concomitant turn-on near infrared (NIR) fluorescence. NBDHEX exhibits anti-cancer activity by selectively inhibiting glutathione-S-transferase pi (GSTP1), which is overexpressed in cancer cells and responsible for the inactivation of chemotherapeutic drugs. The sustained release of NBDHEX from the prodrug would be useful for ameliorating the off-target side-effects of NBDHEX.


Assuntos
Biotina , Pró-Fármacos , Fluorescência , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Linhagem Celular Tumoral , Oxidiazóis/farmacologia
3.
Chemistry ; 29(66): e202302197, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37665099

RESUMO

Stimuli-responsive fluorogenic prodrugs are advantageous for the targeted drug delivery enabling real-time non-invasive monitoring with turn-on fluorescence. We report herein the dual-stimuli (ROS and CA)-responsive thiocarbamate-based prodrug (AM-TCB) for the turn-on fluorogenic delivery of the naphthalimide-based anticancer agent amonafide along with the gasotransmitter hydrogen sulfide (H2 S). A carbamate-based prodrug AM-CB was also designed, capable of releasing the anticancer agent amonafide without any H2 S. The prodrugs were synthesized using multi-step organic synthesis. UV-Vis and fluorescence spectroscopic studies revealed selective reactivity of the boronate ester group of prodrugs towards ROS (primarily H2 O2 ) with the release of amonafide and COS/CO2 via self-immolative processes. Hydrolysis of the generated COS by carbonic anhydrase (CA) produces H2 S. While the prodrug AM-TCB retained the anticancer activity of free amonafide in cancer cells (MDA-MB-231 and HeLa), unlike amonafide, it enhanced the cellular viability of the non-malignant cells (HEK-293). Fluorescence imaging in HeLa cells revealed the simultaneous delivery of the anticancer agent and H2 S from AM-TCB with turn-on fluorescence. Western blot studies further revealed the cytoprotective effects of the released H2 S from AM-TCB. The present adjuvant strategy therefore would be helpful in future for ameliorating the anticancer drug-induced side-effects.


Assuntos
Antineoplásicos , Sulfeto de Hidrogênio , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Sulfeto de Hidrogênio/química , Células HeLa , Fluorescência , Espécies Reativas de Oxigênio , Células HEK293 , Antineoplásicos/farmacologia , Antineoplásicos/química
4.
Curr Opin Chem Biol ; 75: 102337, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37276751

RESUMO

Cellular redox homeostasis is very important for the overall cellular development, function, and oxidative stress often disrupts the process. Small-molecule organoselenium compounds exert key roles in maintaining the redox homeostasis during oxidative stress and cancer owing to their notable antioxidant activities. Among different organoselenium compounds, small-molecule organoselenocyanates have attracted much research attention due to their synthetic utilities and therapeutic potentials. Therefore, the development of convenient synthetic methodologies to different classes of organoselenocyanates from various precursors was explored over the years as useful synthetic building blocks. Additionally, considering their inherent redox and antioxidant properties, the development of biologically relevant organoselenocyanates upon their conjugation with the existing drugs and natural products has been chosen for enhancing the drug potencies and in ameliorating the drug-induced side-effects. In the present report, we have discussed some of the very recent and relevant developments on these aspects in a very concise manner.


Assuntos
Neoplasias , Compostos Organosselênicos , Humanos , Antioxidantes/farmacologia , Oxirredução , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico
5.
Chem Commun (Camb) ; 59(32): 4802-4805, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37000594

RESUMO

L-Cysteine (Cys)-responsive turn-on fluorogenic prodrug AM-ITC was developed for the adjuvant delivery of the anti-cancer drug amonafide and the gasotransmitter hydrogen sulfide (H2S) in aqueous and cellular media. Considering the cytoprotective roles of H2S, the present adjuvant strategy would be helpful in minimizing the anti-cancer drug-induced side-effects.


Assuntos
Antineoplásicos , Sulfeto de Hidrogênio , Pró-Fármacos , Sulfeto de Hidrogênio/farmacologia , Cisteína , Pró-Fármacos/farmacologia , Antineoplásicos/farmacologia , Adjuvantes Imunológicos
6.
Free Radic Biol Med ; 191: 82-96, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038037

RESUMO

The potent anti-cancer activity of naturally occurring organopolysulfides has attracted wide research attention over the last two decades. Sustained donation of hydrogen sulfide (H2S) from organopolysulfides is found to be beneficial for the treatment of several organ-specific cancers. In the present study, for the first time, the mechanism of action for the potent anti-cancer activity of bis(3,5-dimethoxybenzyl) trisulfide 4 against highly aggressive triple-negative breast cancer cells (MDA-MB-231) is described. Preliminary in vitro studies revealed potent anti-proliferative activity of the trisulfide 4 against triple-negative breast cancer cells with an IC50 value of 1.0 µM. Mechanistic studies reveal that the compound exhibited anti-cancer activity, primarily by targeting and suppressing the Wnt/ß-catenin signaling pathway. The inactivation of the ß-catenin level was associated with the cell cycle arrest in the G2/M phase and the significant down-regulation of downstream signaling genes such as Cyclin D1 and c-Myc expression. Several control experiments with analogous organosulfur compounds and the key enzyme inhibitors reveal that the presence of a trisulfide unit in the compound is crucial for the desired inactivation of ß-catenin expression, which is promoted by GSK-3ß-induced phosphorylation of ß-catenin and its proteasomal degradation. Moreover, the trisulfide unit or the released H2S induced down-regulation of the p53 expression with the possible S-sulfhydration process led to p53-independent up-regulation of p21 expression. Therefore, the key results of this study highlighting the potency of synthetic benzylic organotrisulfide and the released H2S towards the growth inhibition of triple-negative breast cancer via Wnt/ß-catenin signaling pathway would certainly be helpful for further studies and developing small-molecule anti-cancer therapeutics in future.


Assuntos
Sulfeto de Hidrogênio , Neoplasias de Mama Triplo Negativas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
7.
Chem Commun (Camb) ; 58(56): 7833-7836, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35748501

RESUMO

Reactive oxygen species (ROS)-responsive near infrared (NIR) fluorogenic prodrug DCI-ROS is developed for the self-immolative release of diclofenac (DCF) with turn-on fluorescence. The non-toxic prodrug exhibited turn-on red fluorescence with endogenous ROS in cancer cells and inhibited COX-2 expression in the inflammation-induced macrophage cells. The prodrug strategy thus would be helpful for the controlled fluorogenic delivery of DCF for inflammatory diseases.


Assuntos
Pró-Fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Diclofenaco/farmacologia , Liberação Controlada de Fármacos , Fluorescência , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/metabolismo
8.
J Mater Chem B ; 10(13): 2183-2193, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35266940

RESUMO

We describe herein the rational development of an organopolysulfide-based fluorogenic donor of hydrogen sulfide (H2S) DCI-PS, which can be activated by the antioxidant selenoenzyme thioredoxin reductase (TrxR) with concomitant release of the dicyanoisophorone-based near-infrared (NIR) fluorophore. Along with the polysulfide probe DCI-PS capable of releasing the NIR fluorophore and H2S, the corresponding disulfide-probe DCI-DS was also rationally designed and synthesized, which releases the fluorophore without donating H2S. Detailed spectroscopic and kinetic studies in an aqueous medium revealed significantly higher reactivity of the probes towards DTT (for TrxR activity) over the well-known cellular abundant biothiol GSH. Mechanistically, the nucleophilic attack at the disulfide/polysulfide linkage by the thiol/selenol group of the bio-analytes leads to the self-immolative cyclization process with the release of the turn-on fluorophore with/without H2S. Considering the overexpression of mammalian TrxR in cancer cells, the turn-on fluorogenic H2S donation process from the cellular non-toxic DCI-PS was validated in a representative breast cancer cell line (MDA-MB-231) for the sustained donation of H2S with concomitant release of the red-emitting NIR fluorophore. The TrxR-triggered fluorescence turn-on process in DCI-PS was further supported by the significant inhibition of the fluorogenic process in the presence of TrxR-selective small-molecule inhibitors and by the significant binding affinity predicted by the protein-ligand docking study. Results with the antioxidant enzyme-triggered intracellular sustained donation of H2S with concomitant fluorescence turn-on will certainly find wider biomedical applications in the near future, particularly in H2S-mediated therapeutics in disease states.


Assuntos
Sulfeto de Hidrogênio , Animais , Fluorescência , Corantes Fluorescentes/química , Sulfeto de Hidrogênio/química , Cinética , Mamíferos/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
10.
Org Biomol Chem ; 16(45): 8769-8782, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30403243

RESUMO

The pharmacological importance, particularly the anti-cancer and chemopreventive potentials, of organochalcogen compounds has attracted wide research attention recently. Herein we describe the synthesis of a series of organochalcogenocyanates that have one or more selenocyanate or thiocyanate units in a single molecule. The anti-proliferative activity of these organochalcogenocyanates in different breast cancer cells shows that selenocyanates exhibit much higher anti-proliferative activities than thiocyanates in general. Our study reveals that the activity of benzyl selenocyanate (1, BSC) could be significantly enhanced by 4-nitro substitution (12), which was more selective towards triple-negative breast cancer cells (MDA-MB-231) over other ER+ breast cancer cells (MCF-7 and T-47D). Furthermore, to the best of our knowledge, this is the first report on the synthesis of compounds having more than two selenocyanate units with promising anti-proliferative activities. Our studies further indicate that the apoptotic activities of selenocyanates are associated with modulation of cellular morphology and cell cycle arrest at S-phase. Selenocyanates also inhibited cellular migration and exhibited weak antioxidant activities. An effective binding interaction of compound 12 with serum albumin indicates its feasible transport in the bloodstream for its enhanced anti-cancer properties. Mechanistic studies by western blot analysis demonstrate that benzylic selenocyanates exhibit anti-proliferative activities by modulating key cellular proteins such as Survivin, Bcl-2 and COX-2; this was further supported by molecular docking studies. The results of this study would be helpful in designing suitable chemotherapeutic and chemopreventive drugs in the future.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Calcogênios/química , Nitrilas/química , Nitrilas/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Bovinos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/química , Células MCF-7 , Ácido Peroxinitroso/química , Soroalbumina Bovina/metabolismo
11.
Bioorg Med Chem ; 21(4): 874-82, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23312611

RESUMO

Induction of apoptosis mediated by the inhibition of ceramidases has been shown to enhance the efficacy of conventional chemotherapy in several cancer models. Among the inhibitors of ceramidases reported in the literature, B-13 is considered as a lead compound having good in vitro potency towards acid ceramidase. Furthermore, owing to the poor activity of B-13 on lysosoamal acid ceramidase in living cells, LCL-464 a modified derivative of B-13 containing a basic ω-amino group at the fatty acid was reported to have higher potency towards lysosomal acid ceramidase in living cells. In a search for more potent inhibitors of ceramidases, we have designed a series of compounds with structural modifications of B-13 and LCL-464. In this study, we show that the efficacy of B-13 in vitro as well as in intact cells can be enhanced by suitable modification of functional groups. Furthermore, a detailed SAR investigation on LCL-464 analogues revealed novel promising inhibitors of aCDase and nCDase. In cell culture studies using the breast cancer cell line MDA-MB-231, some of the newly developed compounds elevated endogenous ceramide levels and in parallel, also induced apoptotic cell death. In summary, this study shows that structural modification of the known ceramidase inhibitors B-13 and LCL-464 generates more potent ceramidase inhibitors that are active in intact cells and not only elevates the cellular ceramide levels, but also enhances cell death.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Amidas/síntese química , Ácidos Láuricos/síntese química , Ceramidase Neutra/antagonistas & inibidores , Propanolaminas/síntese química , Ceramidase Ácida/metabolismo , Amidas/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Ácidos Láuricos/toxicidade , Ceramidase Neutra/metabolismo , Propanolaminas/toxicidade , Relação Estrutura-Atividade
12.
Bioorg Med Chem ; 20(20): 6162-70, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22989912

RESUMO

In the present study we describe the design and synthesis of a series of amide- and sulfonamide-based compounds as inhibitor of recombinant acid and neutral ceramidases. Inhibition of ceramidases has been shown to induce apoptosis and to increase the efficacy of conventional chemotherapy in several cancer models. B-13, lead in vitro inhibitor of acid ceramidase has been recently shown to be virtually inactive towards lysosomal acid ceramidase in living cells at lower concentrations and for a shorter time of treatment, suggesting the development of more potent inhibitors. In this study, a detailed SAR investigation has been performed to understand the effect of different substituents on the phenyl ring of amide- and sulfonamide-based compounds that partially resemble the structure of well-known inhibitors such as B-13, D-e-MAPP as well as NOE. Our results suggest that the electronic effects of the substituents on phenyl ring in B-13 and D-e-MAPP analogues have negligible effects either in enhancing the inhibition potencies or for selectivity towards aCDase over nCDase. However, the hydrophobicity and the steric effects of longer alkyl chains (n-Pr, n-Bu or t-Bu groups) at the phenyl ring were found to be important for an enhanced selectivity towards aCDase over nCDase.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Amidas/química , Etanolaminas/química , Ceramidase Neutra/antagonistas & inibidores , Sulfonamidas/química , Ceramidase Ácida/genética , Ceramidase Ácida/metabolismo , Etanolaminas/síntese química , Etanolaminas/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ceramidase Neutra/genética , Ceramidase Neutra/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
13.
Dalton Trans ; 40(10): 2099-111, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21321730

RESUMO

Gold(I)-based drugs have been used successfully for the treatment of rheumatoid arthritis (RA) for several years. Although the exact mechanism of action of these gold(I) drugs for RA has not been clearly established, the interaction of these compounds with mammalian enzymes has been extensively studied. In this paper, we describe the interaction of therapeutic gold(I) compounds with mammalian proteins that contain cysteine (Cys) and selenocysteine (Sec) residues. Owing to the higher affinity of gold(I) towards sulfur and selenium, gold(I) drugs rapidly react with the activated cysteine or selenocysteine residues of the enzymes to form protein-gold(I)-thiolate or protein-gold(I)-selenolate complexes. The formation of stable gold(I)-thiolate/selenolate complexes generally lead to inhibition of the enzyme activity. The gold-thiolate/selenolate complexes undergo extensive ligand exchange reactions with other nucleophiles and such ligand exchange reactions alter the inhibitory effects of gold(i) complexes. Therefore, the effect of gold(I) compounds on the enzymatic activity of cysteine- or selenocysteine-containing proteins may play important roles in RA. The interaction of gold(I) compounds with different enzymes and the biochemical mechanism underlying the inhibition of enzymatic activities may have broad medicinal implications for the treatment of RA.


Assuntos
Complexos de Coordenação/química , Ouro/química , Proteínas/química , Artrite Reumatoide/tratamento farmacológico , Sítios de Ligação , Domínio Catalítico , Química Farmacêutica , Complexos de Coordenação/uso terapêutico , Cisteína/química , Glutationa Redutase/química , Humanos , Proteínas Tirosina Fosfatases/química , Selenocisteína/química , Albumina Sérica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA