RESUMO
For a majority of patients with non-small cell lung cancer with EGFR mutations, treatment with EGFR inhibitors (EGFRi) induces a clinical response. Despite this initial reduction in tumor size, residual disease persists that leads to disease relapse. Elucidating the preexisting biological differences between sensitive cells and surviving drug-tolerant persister cells and deciphering how drug-tolerant cells evolve in response to treatment could help identify strategies to improve the efficacy of EGFRi. In this study, we tracked the origins and clonal evolution of drug-tolerant cells at a high resolution by using an expressed barcoding system coupled with single-cell RNA sequencing. This platform enabled longitudinal profiling of gene expression and drug sensitivity in response to EGFRi across a large number of clones. Drug-tolerant cells had higher expression of key survival pathways such as YAP and EMT at baseline and could also differentially adapt their gene expression following EGFRi treatment compared with sensitive cells. In addition, drug combinations targeting common downstream components (MAPK) or orthogonal factors (chemotherapy) showed greater efficacy than EGFRi alone, which is attributable to broader targeting of the heterogeneous EGFRi-tolerance mechanisms present in tumors. Overall, this approach facilitates thorough examination of clonal evolution in response to therapy that could inform the development of improved diagnostic approaches and treatment strategies for targeting drug-tolerant cells. SIGNIFICANCE: The evolution and heterogeneity of EGFR inhibitor tolerance are identified in a large number of clones at enhanced cellular and temporal resolution using an expressed barcode technology coupled with single-cell RNA sequencing.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Recidiva Local de Neoplasia , Tolerância a MedicamentosRESUMO
Malignant tumors can evade destruction by the immune system by attracting immune-suppressive regulatory T cells (Treg) cells. The IKZF2 (Helios) transcription factor plays a crucial role in maintaining function and stability of Treg cells, and IKZF2 deficiency reduces tumor growth in mice. Here we report the discovery of NVP-DKY709, a selective molecular glue degrader of IKZF2 that spares IKZF1/3. We describe the recruitment-guided medicinal chemistry campaign leading to NVP-DKY709 that redirected the degradation selectivity of cereblon (CRBN) binders from IKZF1 toward IKZF2. Selectivity of NVP-DKY709 for IKZF2 was rationalized by analyzing the DDB1:CRBN:NVP-DKY709:IKZF2(ZF2 or ZF2-3) ternary complex X-ray structures. Exposure to NVP-DKY709 reduced the suppressive activity of human Treg cells and rescued cytokine production in exhausted T-effector cells. In vivo, treatment with NVP-DKY709 delayed tumor growth in mice with a humanized immune system and enhanced immunization responses in cynomolgus monkeys. NVP-DKY709 is being investigated in the clinic as an immune-enhancing agent for cancer immunotherapy.
Assuntos
Neoplasias , Fatores de Transcrição , Animais , Humanos , Camundongos , Fator de Transcrição Ikaros , Imunoterapia , Neoplasias/terapia , Neoplasias/metabolismo , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Various subunits of mammalian SWI/SNF chromatin remodeling complexes display loss-of-function mutations characteristic of tumor suppressors in different cancers, but an additional role for SWI/SNF supporting cell survival in distinct cancer contexts is emerging. In particular, genetic dependence on the catalytic subunit BRG1/SMARCA4 has been observed in acute myelogenous leukemia (AML), yet the feasibility of direct therapeutic targeting of SWI/SNF catalytic activity in leukemia remains unknown. Here, we evaluated the activity of dual BRG1/BRM ATPase inhibitors across a genetically diverse panel of cancer cell lines and observed that hematopoietic cancer cell lines were among the most sensitive compared with other lineages. This result was striking in comparison with data from pooled short hairpin RNA screens, which showed that only a subset of leukemia cell lines display sensitivity to BRG1 knockdown. We demonstrate that combined genetic knockdown of BRG1 and BRM is required to recapitulate the effects of dual inhibitors, suggesting that SWI/SNF dependency in human leukemia extends beyond a predominantly BRG1-driven mechanism. Through gene expression and chromatin accessibility studies, we show that the dual inhibitors act at genomic loci associated with oncogenic transcription factors, and observe a downregulation of leukemic pathway genes, including MYC, a well-established target of BRG1 activity in AML. Overall, small-molecule inhibition of BRG1/BRM induced common transcriptional responses across leukemia models resulting in a spectrum of cellular phenotypes. IMPLICATIONS: Our studies reveal the breadth of SWI/SNF dependency in leukemia and support targeting SWI/SNF catalytic function as a potential therapeutic strategy in AML.
Assuntos
Adenosina Trifosfatases , Leucemia Mieloide Aguda , Adenosina Trifosfatases/genética , Animais , Carcinogênese , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Intratumoral heterogeneity has been described for various tumor types and models of human cancer, and can have profound effects on tumor progression and drug resistance. This study describes an in-depth analysis of molecular and functional heterogeneity among subclonal populations (SCPs) derived from a single triple-negative breast cancer cell line, including copy number analysis, whole-exome and RNA sequencing, proteome analysis, and barcode analysis of clonal dynamics, as well as functional assays. The SCPs were found to have multiple unique genetic alterations and displayed significant variation in anchorage independent growth and tumor forming ability. Analyses of clonal dynamics in SCP mixtures using DNA barcode technology revealed selection for distinct clonal populations in different in vitro and in vivo environmental contexts, demonstrating that in vitro propagation of cancer cell lines using different culture conditions can contribute to the establishment of unique strains. These analyses also revealed strong enrichment of a single SCP during the development of xenograft tumors in immune-compromised mice. This SCP displayed attenuated interferon signaling in vivo and reduced sensitivity to the antiproliferative effects of type I interferons. Reduction in interferon signaling was found to provide a selective advantage within the xenograft microenvironment specifically. In concordance with the previously described role of interferon signaling as tumor suppressor, these findings suggest that similar selective pressures may be operative in human cancer and patient-derived xenograft models.
Assuntos
Heterogeneidade Genética , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral/genética , Animais , Humanos , Camundongos , Mutação , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Uveal melanoma is a rare and aggressive cancer that originates in the eye. Currently, there are no approved targeted therapies and very few effective treatments for this cancer. Although activating mutations in the G protein alpha subunits, GNAQ and GNA11, are key genetic drivers of the disease, few additional drug targets have been identified. Recently, studies have identified context-specific roles for the mammalian SWI/SNF chromatin remodeling complexes (also known as BAF/PBAF) in various cancer lineages. Here, we find evidence that the SWI/SNF complex is essential through analysis of functional genomics screens and further validation in a panel of uveal melanoma cell lines using both genetic tools and small-molecule inhibitors of SWI/SNF. In addition, we describe a functional relationship between the SWI/SNF complex and the melanocyte lineage-specific transcription factor Microphthalmia-associated Transcription Factor, suggesting that these two factors cooperate to drive a transcriptional program essential for uveal melanoma cell survival. These studies highlight a critical role for SWI/SNF in uveal melanoma, and demonstrate a novel path toward the treatment of this cancer.
Assuntos
Cromatina/metabolismo , Melanoma/genética , Neoplasias Uveais/genética , Animais , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona , Humanos , Camundongos , Fatores de TranscriçãoRESUMO
Recent studies have highlighted that cancer cells with a loss of the SWI/SNF complex catalytic subunit BRG1 are dependent on the remaining ATPase, BRM, making it an attractive target for cancer therapy. However, an understanding of the extent of target inhibition required to arrest cell growth, necessary to develop an appropriate therapeutic strategy, remains unknown. Here, we utilize tunable depletion of endogenous BRM using the SMASh degron, and interestingly observe that BRG1-mutant lung cancer cells require near complete depletion of BRM to robustly inhibit growth both in vitro and in vivo. Therefore, to identify pathways that synergize with partial BRM depletion and afford a deeper response, we performed a genome-wide CRISPR screen and discovered a combinatorial effect between BRM depletion and the knockout of various genes of the oxidative phosphorylation pathway and the anti-apoptotic gene MCL1. Together these studies provide an important framework to elucidate the requirements of BRM inhibition in the BRG1-mutant state with implications on the feasibility of targeting BRM alone, as well as reveal novel insights into pathways that can be exploited in combination toward deeper anti-tumor responses.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Helicases/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Animais , Antineoplásicos/administração & dosagem , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Isoquinolinas/administração & dosagem , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Nucleares/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteólise , Sulfonamidas/administração & dosagem , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 2 (SMARCA2), also known as Brahma homologue (BRM), is a Snf2-family DNA-dependent ATPase. BRM and its close homologue Brahma-related gene 1 (BRG1), also known as SMARCA4, are mutually exclusive ATPases of the large ATP-dependent SWI/SNF chromatin-remodeling complexes involved in transcriptional regulation of gene expression. No small molecules have been reported that modulate SWI/SNF chromatin-remodeling activity via inhibition of its ATPase activity, an important goal given the well-established dependence of BRG1-deficient cancers on BRM. Here, we describe allosteric dual BRM and BRG1 inhibitors that downregulate BRM-dependent gene expression and show antiproliferative activity in a BRG1-mutant-lung-tumor xenograft model upon oral administration. These compounds represent useful tools for understanding the functions of BRM in BRG1-loss-of-function settings and should enable probing the role of SWI/SNF functions more broadly in different cancer contexts and those of other diseases.
Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , DNA Helicases/genética , Desenho de Fármacos , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Administração Oral , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/química , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Although mechanisms of acquired resistance of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here we observe that acquired resistance caused by the EGFR(T790M) gatekeeper mutation can occur either by selection of pre-existing EGFR(T790M)-positive clones or via genetic evolution of initially EGFR(T790M)-negative drug-tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug-tolerant cells had a diminished apoptotic response to third-generation EGFR inhibitors that target EGFR(T790M); treatment with navitoclax, an inhibitor of the anti-apoptotic factors BCL-xL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor-resistant patient tumors. These findings provide evidence that clinically relevant drug-resistant cancer cells can both pre-exist and evolve from drug-tolerant cells, and they point to therapeutic opportunities to prevent or overcome resistance in the clinic.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , RNA Mensageiro/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mutação , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mapeamento de Interação de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Técnicas Biossensoriais , Linhagem Celular Tumoral , Embrião não Mamífero/metabolismo , Genes Reporter , Células HEK293 , Humanos , Camundongos , Osteossarcoma/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismoRESUMO
Resistance to cancer therapies presents a significant clinical challenge. Recent studies have revealed intratumoral heterogeneity as a source of therapeutic resistance. However, it is unclear whether resistance is driven predominantly by pre-existing or de novo alterations, in part because of the resolution limits of next-generation sequencing. To address this, we developed a high-complexity barcode library, ClonTracer, which enables the high-resolution tracking of more than 1 million cancer cells under drug treatment. In two clinically relevant models, ClonTracer studies showed that the majority of resistant clones were part of small, pre-existing subpopulations that selectively escaped under therapeutic challenge. Moreover, the ClonTracer approach enabled quantitative assessment of the ability of combination treatments to suppress resistant clones. These findings suggest that resistant clones are present before treatment, which would make up-front therapeutic combinations that target non-overlapping resistance a preferred approach. Thus, ClonTracer barcoding may be a valuable tool for optimizing therapeutic regimens with the goal of curative combination therapies for cancer.
Assuntos
Código de Barras de DNA Taxonômico/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Crizotinibe , DNA/química , DNA Complementar/metabolismo , Transição Epitelial-Mesenquimal , Cloridrato de Erlotinib , Proteínas de Fusão bcr-abl/genética , Dosagem de Genes , Biblioteca Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Modelos Teóricos , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Quinazolinas/administração & dosagem , Análise de Sequência de RNARESUMO
Epigenetic dysregulation is an emerging hallmark of cancers. We developed a high-information-content mass spectrometry approach to profile global histone modifications in human cancers. When applied to 115 lines from the Cancer Cell Line Encyclopedia, this approach identified distinct molecular chromatin signatures. One signature was characterized by increased histone 3 lysine 36 (H3K36) dimethylation, exhibited by several lines harboring translocations in NSD2, which encodes a methyltransferase. A previously unknown NSD2 p.Glu1099Lys (p.E1099K) variant was identified in nontranslocated acute lymphoblastic leukemia (ALL) cell lines sharing this signature. Ectopic expression of the variant induced a chromatin signature characteristic of NSD2 hyperactivation and promoted transformation. NSD2 knockdown selectively inhibited the proliferation of NSD2-mutant lines and impaired the in vivo growth of an NSD2-mutant ALL xenograft. Sequencing analysis of >1,000 pediatric cancer genomes identified the NSD2 p.E1099K alteration in 14% of t(12;21) ETV6-RUNX1-containing ALLs. These findings identify NSD2 as a potential therapeutic target for pediatric ALL and provide a general framework for the functional annotation of cancer epigenomes.
Assuntos
Cromatina/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Repressoras/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Criança , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Camundongos , Camundongos SCID , Células NIH 3T3 , Transplante de Neoplasias , Análise de Sequência de DNA , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Molecular-genetic imaging of cancer is in its infancy. Over the past decade gene reporter systems have been optimized in preclinical models and some have found their way into the clinic. The search is on to find the best combination of gene delivery vehicle and reporter imaging system that can be translated safely and quickly. The goal is to have a combination that can detect a wide variety of cancers with high sensitivity and specificity in a way that rivals the current clinical standard, positron emission tomography with [(18)F]fluorodeoxyglucose. To do so will require systemic delivery of reporter genes for the detection of micrometastases, and a nontoxic vector, whether viral or based on nanotechnology, to gain widespread acceptance by the oncology community. Merger of molecular-genetic imaging with gene therapy, a strategy that has been employed in the past, will likely be necessary for such imaging to reach widespread clinical use.
Assuntos
Diagnóstico por Imagem/métodos , Terapia Genética/métodos , Micrometástase de Neoplasia/diagnóstico , Neoplasias/diagnóstico , Fluordesoxiglucose F18 , Técnicas de Transferência de Genes , Genes Reporter , Humanos , Micrometástase de Neoplasia/genética , Neoplasias/genética , Neoplasias/terapia , Especificidade de Órgãos , Tomografia por Emissão de Pósitrons , Regiões Promotoras Genéticas , Sensibilidade e Especificidade , Transcrição GênicaRESUMO
Molecular-genetic imaging is advancing from a valuable preclinical tool to a guide for patient management. The strategy involves pairing an imaging reporter gene with a complementary imaging agent in a system that can be used to measure gene expression or protein interaction or track gene-tagged cells in vivo. Tissue-specific promoters can be used to delineate gene expression in certain tissues, particularly when coupled with an appropriate amplification mechanism. Here we show that the progression elevated gene-3 (PEG-3) promoter, derived from a rodent gene mediating tumor progression and metastatic phenotypes, can be used to drive imaging reporters selectively to enable detection of micrometastatic disease in mouse models of human melanoma and breast cancer using bioluminescence and radionuclide-based molecular imaging techniques. Because of its strong promoter activity, tumor specificity and capacity for clinical translation, PEG-3 promoter-driven gene expression may represent a practical, new system for facilitating cancer imaging and therapy.
Assuntos
Biologia Molecular/métodos , Imagem Molecular/métodos , Neoplasias/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genes Reporter , Humanos , Luciferases/genética , Melanoma/patologia , Camundongos , Metástase Neoplásica/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genéticaRESUMO
BACKGROUND: Angiogenesis plays an important role in tumor growth and metastasis; therefore, inhibition of angiogenesis is a promising strategy for developing new anticancer drugs. Type 2 methionine aminopeptidase (MetAP2) protein is likely a molecular target of angiogenesis inhibitors. METHODS: Nitroxoline, an antibiotic used to treat urinary tract infections, was identified from a high-throughput screen of a library of 175,000 compounds for MetAP2 inhibitors and from a parallel screen using the Johns Hopkins Drug Library to identify currently used clinical drugs that can also inhibit human umbilical vein endothelial cells (HUVEC) proliferation. To investigate the mechanism of action of nitroxoline, inhibition of MetAP2 activity and induction of senescence were assessed in HUVEC. To test the antiangiogenic activity of nitroxoline, endothelial tube formation in Matrigel and microvessel formation in Matrigel plugs in vivo were assessed. Antitumor efficacy of nitroxoline was evaluated in mouse models of human breast cancer xenograft (n = 10) and bladder cancer orthotopic xenograft (n = 11). Furthermore, the mechanism of action of nitroxoline was investigated in vivo. RESULTS: Nitroxoline inhibited MetAP2 activity in vitro (half maximal inhibitory concentration [IC(50)] = 54.8 nM, 95% confidence interval [CI] = 22.6 to 132.8 nM) and HUVEC proliferation (IC(50) = 1.9 µM, 95% CI = 1.54 to 2.39 µM). Nitroxoline inhibited MetAP2 activity in HUVEC in a dose-dependent manner and induced premature senescence in a biphasic manner. Nitroxoline inhibited endothelial tube formation in Matrigel and reduced microvessel density in vivo. Mice (five per group) treated with nitroxoline showed a 60% reduction in tumor volume in breast cancer xenografts (tumor volume on day 30, vehicle vs nitroxoline, mean = 215.4 vs 86.5 mm(3), difference = 128.9 mm(3), 95% CI = 32.9 to 225.0 mm(3), P = .012) and statistically significantly inhibited growth of bladder cancer in an orthotopic mouse model (tumor bioluminescence intensities of vehicle [n = 5] vs nitroxoline [n = 6], P = .045). CONCLUSION: Nitroxoline shows promise as a potential therapeutic antiangiogenic agent.
Assuntos
Aminopeptidases/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/tratamento farmacológico , Glicoproteínas/antagonistas & inibidores , Neovascularização Patológica/prevenção & controle , Nitroquinolinas/farmacologia , Sirtuína 1/antagonistas & inibidores , Neoplasias da Bexiga Urinária/irrigação sanguínea , Neoplasias da Bexiga Urinária/tratamento farmacológico , Acetilação/efeitos dos fármacos , Aminopeptidases/metabolismo , Animais , Anti-Infecciosos Urinários/farmacologia , Proliferação de Células/efeitos dos fármacos , Colágeno , Cicloexanos/farmacologia , Modelos Animais de Doenças , Combinação de Medicamentos , Sinergismo Farmacológico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Glicoproteínas/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Laminina , Metionil Aminopeptidases , Camundongos , Camundongos Nus , O-(Cloroacetilcarbamoil)fumagilol , Proteoglicanas , RNA Interferente Pequeno , Proteínas Recombinantes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sesquiterpenos/farmacologia , Sirtuína 1/metabolismo , Transfecção , Veias Umbilicais/metabolismo , Veias Umbilicais/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We report a strategy based on bioisosterism to improve the physicochemical properties of existing hydrophilic, urea-based GCPII inhibitors. Comprehensive structure-activity relationship studies of the P1' site of ZJ-43- and DCIBzL-based compounds identified several glutamate-free inhibitors with K(i) values below 20nM. Among them, compound 32d (K(i)=11nM) exhibited selective uptake in GCPII-expressing tumors by SPECT-CT imaging in mice. A novel conformational change of amino acids in the S1' pharmacophore pocket was observed in the X-ray crystal structure of GCPII complexed with 32d.
Assuntos
Glutamato Carboxipeptidase II/antagonistas & inibidores , Lisina/análogos & derivados , Compostos Radiofarmacêuticos/química , Ureia/análogos & derivados , Animais , Sítios de Ligação , Cristalografia por Raios X , Glutamato Carboxipeptidase II/metabolismo , Lisina/síntese química , Lisina/química , Lisina/farmacologia , Camundongos , Compostos Radiofarmacêuticos/síntese química , Relação Estrutura-Atividade , Tomografia Computadorizada de Emissão de Fóton Único , Ureia/síntese química , Ureia/química , Ureia/farmacologiaRESUMO
Bioluminescence imaging (BLI) is becoming indispensable to the study of transgene expression during development and, in many in vivo models of disease such as cancer, for high throughput drug screening in vitro. Because reaction of d-luciferin with firefly luciferase (fLuc) produces photons of sufficiently long wavelength to permit imaging in intact animals, use of this substrate and enzyme pair has become the method of choice for performing BLI in vivo. We now show that expression of the ATP-binding cassette (ABC) family transporter ABCG2/BCRP affects BLI signal output from the substrate d-luciferin. In vitro studies show that d-luciferin is a substrate for ABCG2/BCRP but not for the MDR1 P-glycoprotein (ABCB1/Pgp), multidrug resistance protein 1 (MRP1/ABCC1), or multidrug resistance protein 2 (MRP2/ABCC2). d-Luciferin uptake within cells is shown to be modulated by ABC transporter inhibitors, including the potent and selective ABCG2/BCRP inhibitor fumitremorgin C. Images of xenografts engineered to express transgenic ABCG2/BCRP, as well as xenografts derived from the human prostate cancer cell line 22Rv1 that naturally express ABCG2/BCRP, show that ABCG2/BCRP expression and function within regions of interest substantially influence d-luciferin-dependent bioluminescent output in vivo. These findings highlight the need to consider ABCG2/BCRP effects during d-luciferin-based BLI and suggest novel high throughput methods for identifying new ABCG2/BCRP inhibitors.