Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 305(11): E1339-47, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085031

RESUMO

Hearts utilize fatty acids as a primary source of energy. The sources of those lipids include free fatty acids and lipoprotein triglycerides. Deletion of the primary triglyceride-hydrolyzing enzyme lipoprotein lipase (LPL) leads to cardiac dysfunction. Whether heart LPL-knockout (hLPL0) mice are compromised due a deficiency in energetic substrates is unknown. To test whether alternative sources of energy will prevent cardiac dysfunction in hLPL0 mice, two different models were used to supply nonlipid energy. 1) hLPL0 mice were crossed with mice transgenically expressing GLUT1 in cardiomyocytes to increase glucose uptake into the heart; this cross-corrected cardiac dysfunction, reduced cardiac hypertrophy, and increased myocardial ATP. 2) Mice were randomly assigned to a sedentary or training group (swimming) at 3 mo of age, which leads to increased skeletal muscle production of lactate. hLPL0 mice had greater expression of the lactate transporter monocarboxylate transporter-1 (MCT-1) and increased cardiac lactate uptake. Compared with hearts from sedentary hLPL0 mice, hearts from trained hLPL0 mice had adaptive hypertrophy and improved cardiac function. We conclude that defective energy intake and not the reduced uptake of fat-soluble vitamins or cholesterol is responsible for cardiac dysfunction in hLPL0 mice. In addition, our studies suggest that adaptations in cardiac metabolism contribute to the beneficial effects of exercise on the myocardium of patients with heart failure.


Assuntos
Metabolismo Energético/genética , Coração/fisiologia , Lipase Lipoproteica/genética , Miocárdio/metabolismo , Triglicerídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/prevenção & controle , Ecocardiografia , Transportador de Glucose Tipo 1/genética , Lipase Lipoproteica/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Especificidade de Órgãos/genética
2.
J Biol Chem ; 288(20): 14046-14058, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23542081

RESUMO

Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, although GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in subcutaneous tissue and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance, and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the "gatekeeper" for tissue lipid distribution.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo/metabolismo , Lipase Lipoproteica/deficiência , Lipase Lipoproteica/genética , Adipócitos/citologia , Animais , Transplante de Medula Óssea , Quilomícrons/farmacocinética , Lipídeos/química , Lipólise , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/metabolismo
3.
Am J Physiol Endocrinol Metab ; 300(3): E489-99, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21139071

RESUMO

Normal hearts have increased contractility in response to catecholamines. Because several lipids activate PKCs, we hypothesized that excess cellular lipids would inhibit cardiomyocyte responsiveness to adrenergic stimuli. Cardiomyocytes treated with saturated free fatty acids, ceramide, and diacylglycerol had reduced cellular cAMP response to isoproterenol. This was associated with increased PKC activation and reduction of ß-adrenergic receptor (ß-AR) density. Pharmacological and genetic PKC inhibition prevented both palmitate-induced ß-AR insensitivity and the accompanying reduction in cell surface ß-ARs. Mice with excess lipid uptake due to either cardiac-specific overexpression of anchored lipoprotein lipase, PPARγ, or acyl-CoA synthetase-1 or high-fat diet showed reduced inotropic responsiveness to dobutamine. This was associated with activation of protein kinase C (PKC)α or PKCδ. Thus, several lipids that are increased in the setting of lipotoxicity can produce abnormalities in ß-AR responsiveness. This can be attributed to PKC activation and reduced ß-AR levels.


Assuntos
Lipídeos/fisiologia , Miócitos Cardíacos/metabolismo , Proteína Quinase C/fisiologia , Receptores Adrenérgicos beta/fisiologia , Animais , Western Blotting , Ceramidas/metabolismo , AMP Cíclico/metabolismo , Dieta , Gorduras na Dieta/farmacologia , Diglicerídeos/metabolismo , Ecocardiografia , Ativação Enzimática/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Miócitos Cardíacos/enzimologia , RNA/genética , RNA/isolamento & purificação , RNA Interferente Pequeno/genética
4.
J Biol Chem ; 285(49): 37976-86, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20852327

RESUMO

Lipids circulate in the blood in association with plasma lipoproteins and enter the tissues either after hydrolysis or as non-hydrolyzable lipid esters. We studied cardiac lipids, lipoprotein lipid uptake, and gene expression in heart-specific lipoprotein lipase (LpL) knock-out (hLpL0), CD36 knock-out (Cd36(-/-)), and double knock-out (hLpL0/Cd36(-/-)-DKO) mice. Loss of either LpL or CD36 led to a significant reduction in heart total fatty acyl-CoA (control, 99.5 ± 3.8; hLpL0, 36.2 ± 3.5; Cd36(-/-), 57.7 ± 5.5 nmol/g, p < 0.05) and an additive effect was observed in the DKO (20.2 ± 1.4 nmol/g, p < 0.05). Myocardial VLDL-triglyceride (TG) uptake was reduced in the hLpL0 (31 ± 6%) and Cd36(-/-) (47 ± 4%) mice with an additive reduction in the DKO (64 ± 5%) compared with control. However, LpL but not CD36 deficiency decreased VLDL-cholesteryl ester uptake. Endogenously labeled mouse chylomicrons were produced by tamoxifen treatment of ß-actin-MerCreMer/LpL(flox/flox) mice. Induced loss of LpL increased TG levels >10-fold and reduced HDL by >50%. After injection of these labeled chylomicrons in the different mice, chylomicron TG uptake was reduced by ∼70% and retinyl ester by ∼50% in hLpL0 hearts. Loss of CD36 did not alter either chylomicron TG or retinyl ester uptake. LpL loss did not affect uptake of remnant lipoproteins from ApoE knock-out mice. Our data are consistent with two pathways for fatty acid uptake; a CD36 process for VLDL-derived fatty acid and a non-CD36 process for chylomicron-derived fatty acid uptake. In addition, our data show that lipolysis is involved in uptake of core lipids from TG-rich lipoproteins.


Assuntos
Antígenos CD36/metabolismo , VLDL-Colesterol/metabolismo , Quilomícrons/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipase Lipoproteica/metabolismo , Lipoproteínas VLDL/metabolismo , Miocárdio/metabolismo , Triglicerídeos/metabolismo , Animais , Antineoplásicos Hormonais/farmacocinética , Antígenos CD36/genética , VLDL-Colesterol/genética , Quilomícrons/genética , Ácidos Graxos/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipase Lipoproteica/genética , Lipoproteínas VLDL/genética , Camundongos , Camundongos Knockout , Tamoxifeno/farmacologia , Triglicerídeos/genética
5.
Am J Physiol Endocrinol Metab ; 295(3): E705-13, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18647880

RESUMO

Fatty acids (FAs) are acquired from free FA associated with albumin and lipoprotein triglyceride that is hydrolyzed by lipoprotein lipase (LpL). Hypertrophied hearts shift their substrate usage pattern to more glucose and less FA. However, FAs may still be an important source of energy in hypertrophied hearts. The aim of this study was to examine the importance of LpL-derived FAs in hypertensive hypertrophied hearts. We followed cardiac function and metabolic changes during 2 wk of angiotensin II (ANG II)-induced hypertension in control and heart-specific lipoprotein lipase knockout (hLpL0) mice. Glucose metabolism was increased in ANG II-treated control (control/ANG II) hearts, raising it to the same level as hLpL0 hearts. FA uptake-related genes, CD36 and FATP1, were reduced in control/ANG II hearts to levels found in hLpL0 hearts. ANG II did not alter these metabolic genes in hLpL0 mice. LpL activity was preserved, and mitochondrial FA oxidation-related genes were not altered in control/ANG II hearts. In control/ANG II hearts, triglyceride stores were consumed and reached the same levels as in hLpL0/ANG II hearts. Intracellular ATP content was reduced only in hLpL0/ANG II hearts. Both ANG II and deoxycorticosterone acetate-salt induced hypertension caused heart failure only in hLpL0 mice. Our data suggest that LpL activity is required for normal cardiac metabolic compensation to hypertensive stress.


Assuntos
Hipertensão/enzimologia , Hipertensão/metabolismo , Lipase Lipoproteica/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Angiotensina II/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/metabolismo , Desoxicorticosterona/farmacologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Hipertensão/patologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Camundongos , Camundongos Knockout , Miocárdio/patologia , Oxirredução , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA