Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 194(4): e63478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37975178

RESUMO

Bilateral perisylvian polymicrogyria (BPP) is a structural malformation of the cerebral cortex that can be caused by several genetic abnormalities. The most common clinical manifestations of BPP include intellectual disability and epilepsy. Cytoplasmic FMRP-interacting protein 2 (CYFIP2) is a protein that interacts with the fragile X mental retardation protein (FMRP). CYFIP2 variants can cause various brain structural abnormalities with the most common clinical manifestations of intellectual disability, epileptic encephalopathy and dysmorphic features. We present a girl with multiple disabilities and BPP caused by a heterozygous, novel, likely pathogenic variant (c.1651G>C: p.(Val551Leu) in the CYFIP2 gene. Our case report broadens the spectrum of genetic diversity associated with BPP by incorporating CYFIP2.


Assuntos
Anormalidades Múltiplas , Encefalopatias , Deficiência Intelectual , Malformações do Desenvolvimento Cortical , Polimicrogiria , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Polimicrogiria/genética , Polimicrogiria/complicações , Anormalidades Múltiplas/genética , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/complicações , Encefalopatias/complicações , Proteínas Adaptadoras de Transdução de Sinal/genética
2.
Eur J Hum Genet ; 31(11): 1270-1274, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37684519

RESUMO

Polydactyly is the most common limb malformation that occurs in 1.6-10.6 per one thousand live births, with incidence varying with ancestry. The underlying gene has been identified for many of the ~100 syndromes that include polydactyly. While for the more common form, nonsydromic polydactyly, eleven candidate genes have been reported. We investigated the underlying genetic cause of autosomal recessive nonsyndromic postaxial polydactyly in four consanguineous Pakistani families. Some family members with postaxial polydactyly also present with syndactyly, camptodactyly, or clinodactyly. Analysis of the exome sequence data revealed two novel homozygous frameshift deletions in EFCAB7: [c.830delG;p.(Gly277Valfs*5)]; in three families and [c.1350_1351delGA;p.(Asn451Phefs*2)] in one family. Sanger sequencing confirmed that these variants segregated with postaxial polydactyly, i.e., family members with postaxial polydactyly were found to be homozygous while unaffected members were heterozygous or wild type. EFCAB7 displays expressions in the skeletal muscle and on the cellular level in cilia. IQCE-EFCAB7 and EVC-EVC2 are part of the heterotetramer EvC complex, which is a positive regulator of the Hedgehog (Hh) pathway, that plays a key role in limb formation. Depletion of either EFCAB7 or IQCE inhibits induction of Gli1, a direct Hh target gene. Variants in IQCE and GLI1 have been shown to cause nonsyndromic postaxial polydactyly, while variants in EVC and EVC2 underlie Ellis van Creveld and Weyers syndromes, which include postaxial polydactyly as a phenotype. This is the first report of the involvement of EFCAB7 in human disease etiology.


Assuntos
Deformidades Congênitas dos Membros , Polidactilia , Humanos , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco , Polidactilia/genética , Dedos/anormalidades
3.
Hum Mol Genet ; 32(7): 1184-1192, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36355422

RESUMO

Congenital hearing impairment (HI) is a genetically highly heterogeneous disorder in which prompt recognition and intervention are crucial to optimize outcomes. In this study, we used exome sequencing to investigate a large consanguineous Pakistani family with eight affected individuals showing bilateral severe-to-profound HI. This identified a homozygous splice region variant in STX4 (c.232 + 6T>C), which causes exon skipping and a frameshift, that segregated with HI (two-point logarithm of odds (LOD) score = 5.9). STX4, a member of the syntaxin family, is a component of the SNARE machinery involved in several vesicle transport and recycling pathways. In silico analysis showed that murine orthologue Stx4a is highly and widespread expressed in the developing and adult inner ear. Immunofluorescent imaging revealed localization of STX4A in the cell body, cell membrane and stereocilia of inner and outer hair cells. Furthermore, a morpholino-based knockdown of stx4 in zebrafish showed an abnormal startle response, morphological and developmental defects, and a disrupted mechanotransduction function in neuromast hair cells measured via FM1-43 uptake. Our findings indicate that STX4 dysfunction leads to HI in humans and zebrafish and supports the evolutionary conserved role of STX4 in inner ear development and hair cell functioning.


Assuntos
Mecanotransdução Celular , Peixe-Zebra , Adulto , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Proteínas Qa-SNARE/genética , Audição/genética , Células Ciliadas Auditivas Externas
4.
Mol Genet Genomic Med ; 10(7): e1995, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35698919

RESUMO

BACKGROUND: Branchio-otic syndrome (BO) is one of the most common types of syndromic hearing impairment (HI) with an incidence of 1/40,000 globally. It is an autosomal dominant disorder typically characterized by the coexistence of branchial cysts or fistulae, malformations of the external, middle, and inner ears with preauricular pits or tags and a variable degree of HI. Most cases of BO have been reported in populations of European ancestry. To date, only few cases have been reported in people from African descent. METHODS: After a careful clinical examination, a pure tone audiometry was performed. DNA was extracted from peripheral blood and whole exome, and Sanger sequencing were performed for genetic analysis. RESULTS: Eight individuals from a large non-consanguineous Malian family, with autosomal dominant inheritance were enrolled. The ages at diagnosis ranged from 8 to 54 years. A high phenotypic variability was noted among the affected individuals. Four patients presented with a post-lingual and mixed type of HI, one individual had conductive HI while three had normal hearing but presented other BO features namely branchial fistulae and preauricular sinus. Serum creatinine level and renal ultrasonography were normal in three affected individuals who performed them. Genetic testing identified a monoallelic pathogenic variant in EYA1 (c.1286A > G; p.Asp429Gly) segregating with BO syndrome in the family. CONCLUSION: This is the first genetically confirmed case of BO syndrome caused by EYA1 variant in the sub-Saharan African population, expanding the genetic spectrum of the condition.


Assuntos
Perda Auditiva , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares , Proteínas Tirosina Fosfatases , Adolescente , Adulto , Síndrome Brânquio-Otorrenal , Criança , Perda Auditiva/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Linhagem , Proteínas Tirosina Fosfatases/genética , Adulto Jovem
5.
Commun Biol ; 5(1): 369, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440622

RESUMO

We investigated hearing impairment (HI) in 51 families from Ghana with at least two affected members that were negative for GJB2 pathogenic variants. DNA samples from 184 family members underwent whole-exome sequencing (WES). Variants were found in 14 known non-syndromic HI (NSHI) genes [26/51 (51.0%) families], five genes that can underlie either syndromic HI or NSHI [13/51 (25.5%)], and one syndromic HI gene [1/51 (2.0%)]. Variants in CDH23 and MYO15A contributed the most to HI [31.4% (16/51 families)]. For DSPP, an autosomal recessive mode of inheritance was detected. Post-lingual expression was observed for a family segregating a MARVELD2 variant. To our knowledge, seven novel candidate HI genes were identified (13.7%), with six associated with NSHI (INPP4B, CCDC141, MYO19, DNAH11, POTEI, and SOX9); and one (PAX8) with Waardenburg syndrome. MYO19 and DNAH11 were replicated in unrelated Ghanaian probands. Six of the novel genes were expressed in mouse inner ear. It is known that Pax8-/- mice do not respond to sound, and depletion of Sox9 resulted in defective vestibular structures and abnormal utricle development. Most variants (48/60; 80.0%) have not previously been associated with HI. Identifying seven candidate genes in this study emphasizes the potential of novel HI genes discovery in Africa.


Assuntos
Exoma , Perda Auditiva , Animais , Caderinas/genética , Gana , Perda Auditiva/genética , Humanos , Proteína 2 com Domínio MARVEL/genética , Camundongos , Mutação , Miosinas , Sequenciamento do Exoma/métodos
6.
Genes (Basel) ; 12(11)2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34828371

RESUMO

Hearing impairment (HI) is a sensory disorder with a prevalence of 0.0055 live births in South Africa. DNA samples from a South African family presenting with progressive, autosomal dominant non-syndromic HI were subjected to whole-exome sequencing, and a novel monoallelic variant in REST [c.1244GC; p.(C415S)], was identified as the putative causative variant. The co-segregation of the variant was confirmed with Sanger Sequencing. The variant is absent from databases, 103 healthy South African controls, and 52 South African probands with isolated HI. In silico analysis indicates that the p.C415S variant in REST substitutes a conserved cysteine and results in changes to the surrounding secondary structure and the disulphide bonds, culminating in alteration of the tertiary structure of REST. Localization studies using ectopically expressed GFP-tagged Wild type (WT) and mutant REST in HEK-293 cells show that WT REST localizes exclusively to the nucleus; however, the mutant protein localizes throughout the cell. Additionally, mutant REST has an impaired ability to repress its known target AF1q. The data demonstrates that the identified mutation compromises the function of REST and support its implication in HI. This study is the second report, worldwide, to implicate REST in HI and suggests that it should be included in diagnostic HI panels.


Assuntos
Substituição de Aminoácidos , Sequenciamento do Exoma/métodos , Perda Auditiva Neurossensorial/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Linhagem , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , África do Sul
7.
J Med Genet ; 58(11): 743-751, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32978268

RESUMO

OBJECTIVE: To investigate the diagnostic value of implementing a stepwise genetic testing strategy (SGTS) in genetically unsolved cases with dystrophinopathies. METHODS: After routine genetic testing in 872 male patients with highly suspected dystrophinopathies, we identified 715 patients with a pathogenic DMD variant. Of the 157 patients who had no pathogenic DMD variants and underwent a muscle biopsy, 142 patients were confirmed to have other myopathies, and 15 suspected dystrophinopathies remained genetically undiagnosed. These 15 patients underwent a more comprehensive evaluation as part of the SGTS pipeline, which included the stepwise analysis of dystrophin mRNA, short-read whole-gene DMD sequencing, long-read whole-gene DMD sequencing and in silico bioinformatic analyses. RESULTS: SGTS successfully yielded a molecular diagnosis of dystrophinopathy in 11 of the 15 genetically unsolved cases. We identified 8 intronic and 2 complex structural variants (SVs) leading to aberrant splicing in 10 of 11 patients, of which 9 variants were novel. In one case, a molecular defect was detected on mRNA and protein level only. Aberrant splicing mechanisms included 6 pseudoexon inclusions and 4 alterations of splice sites and splicing regulatory elements. We showed for the first time the exonisation of a MER48 element as a novel pathogenic mechanism in dystrophinopathies. CONCLUSION: Our study highlights the high diagnostic utility of implementing a SGTS pipeline in dystrophinopathies with intronic variants and complex SVs.


Assuntos
Distrofina/genética , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Adolescente , Biópsia , Criança , Pré-Escolar , Éxons , Testes Genéticos/métodos , Humanos , Íntrons , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Distrofias Musculares/diagnóstico por imagem , Adulto Jovem
8.
Genes (Basel) ; 11(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585897

RESUMO

Congenital hearing impairment is a sensory disorder that is genetically highly heterogeneous. By performing exome sequencing in two families with congenital nonsyndromic profound sensorineural hearing loss (SNHL), we identified autosomal dominantly inherited missense variants [p.(Asn283Ser); p.(Thr116Ile)] in GREB1L, a neural crest regulatory molecule. The p.(Thr116Ile) variant was also associated with bilateral cochlear aplasia and cochlear nerve aplasia upon temporal bone imaging, an ultra-rare phenotype previously seen in patients with de novo GREB1L variants. An important role of GREB1L in normal ear development has also been demonstrated by greb1l-/- zebrafish, which show an abnormal sensory epithelia innervation. Last, we performed a review of all disease-associated variation described in GREB1L, as it has also been implicated in renal, bladder and genital malformations. We show that the spectrum of features associated with GREB1L is broad, variable and with a high level of reduced penetrance, which is typically characteristic of neurocristopathies. So far, seven GREB1L variants (14%) have been associated with ear-related abnormalities. In conclusion, these results show that autosomal dominantly inherited variants in GREB1L cause profound SNHL. Furthermore, we provide an overview of the phenotypic spectrum associated with GREB1L variants and strengthen the evidence of the involvement of GREB1L in human hearing.


Assuntos
Sequenciamento do Exoma , Perda Auditiva Neurossensorial/genética , Rim/metabolismo , Proteínas de Neoplasias/genética , Animais , Pré-Escolar , Exoma/genética , Feminino , Perda Auditiva Neurossensorial/patologia , Humanos , Rim/patologia , Masculino , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genética , Crista Neural/metabolismo , Linhagem , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA