Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Med Chem ; 64(6): 2923-2936, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33706513

RESUMO

A product recall is the outcome of a careful pharmacovigilance; and it is an integral part of drug regulation. Among various reasons for product recall, the detection of unacceptable levels of carcinogenic impurities is one of the most serious concerns. The genotoxic and carcinogenic potential of N-nitrosamines raises a serious safety concern, and in September 2020, the FDA issued guidance for the pharmaceutical industry regarding the control of nitrosamines in drug products. The FDA database shows that >1400 product lots have been recalled from the market due to the presence of carcinogenic N-nitrosamine impurities at levels beyond the acceptable intake limit of 26.5 ng/day. The drugs that were present in recalled products include valsartan, irbesartan, losartan, metformin, ranitidine, and nizatidine. This perspective provides a critical account of these product recalls with an emphasis on the source and mechanism for the formation of N-nitrosamines in these products.


Assuntos
Carcinógenos/análise , Contaminação de Medicamentos/prevenção & controle , Recall de Medicamento , Nitrosaminas/análise , Preparações Farmacêuticas/química , Indústria Farmacêutica , Humanos , Estados Unidos , United States Food and Drug Administration
2.
Autophagy ; 17(11): 3813-3832, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33404280

RESUMO

Alzheimer disease (AD) is usually accompanied by two prominent pathological features, cerebral accumulation of amyloid-ß (Aß) plaques and presence of MAPT/tau neurofibrillary tangles. Dysregulated clearance of Aß largely contributes to its accumulation and plaque formation in the brain. Macroautophagy/autophagy is a lysosomal degradative process, which plays an important role in the clearance of Aß. Failure of autophagic clearance of Aß is currently acknowledged as a contributing factor to increased accumulation of Aß in AD brains. In this study, we have identified crocetin, a pharmacologically active constituent from the flower stigmas of Crocus sativus, as a potential inducer of autophagy in AD. In the cellular model, crocetin induced autophagy in N9 microglial and primary neuron cells through STK11/LKB1 (serine/threonine kinase 11)-mediated AMP-activated protein kinase (AMPK) pathway activation. Autophagy induction by crocetin significantly increased Aß clearance in N9 cells. Moreover, crocetin crossed the blood-brain barrier and induced autophagy in the brains' hippocampi of wild-type male C57BL/6 mice. Further studies in transgenic male 5XFAD mice, as a model of AD, revealed that one-month treatment with crocetin significantly reduced Aß levels and neuroinflammation in the mice brains and improved memory function by inducing autophagy that was mediated by AMPK pathway activation. Our findings support further development of crocetin as a pharmacological inducer of autophagy to prevent, slow down progression, and/or treat AD.Abbreviations: Aß: amyloid-ß; ABCB1/P-gp/P-glycoprotein: ATP-binding cassette, subfamily B (MDR/TAP), member 1; AD: Alzheimer disease; AMPK/PRKAA: AMP-activated protein kinase; APP: amyloid beta (A4) precursor protein; ATG: autophagy related; BBB: blood-brain barrier; BECN1: beclin 1, autophagy related; CAMKK2/CaMKKß: calcium/calmodulin-dependent protein kinase kinase 2, beta; CSE: Crocus sativus extract; CTSB: cathepsin B; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GFAP: glial fibrillary acidic protein; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; Kp: brain partition coefficient; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2: microtubule-associated protein 2; MAPK/ERK: mitogen-activated protein kinase; MAPT/tau: microtubule-associated protein tau; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MTOR: mechanistic target of rapamycin kinase; MWM: Morris water maze; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; NMDA: N-methyl-d-aspartic acid; RPTOR: regulatory associated protein of MTOR; RPS6KB1/p70S6K: ribosomal protein S6 kinase 1; SQSTM1: sequestosome 1; SRB: sulforhodamine B; STK11/LKB1: serine/threonine kinase 11; TFEB: transcription factor EB; TSC2: TSC complex subunit 2; ULK1: unc-51 like kinase 1.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Carotenoides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Vitamina A/análogos & derivados , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Vitamina A/farmacologia
3.
J Ethnopharmacol ; 254: 112758, 2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32165175

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis is a chronic inflammatory disease of joints. Dysoxylum binectariferum Hook.f (Family: Meliaceae) is a Indian medicinal plant which is traditionally being used to heal inflammation of joints. AIM OF THE STUDY: This work was aimed to carry out chemical standardization, in-vitro/in-vivo validation, oral pharmacokinetics and formulation development of anti-arthritic botanical lead, the rohitukine-enriched fraction of D. binectariferum. MATERIALS AND METHODS: The rohitukine-enriched fraction of D. binectariferum was standardized using four chemical markers and was checked for microbial load, heavy metal content, aflatoxins and pesticides. Its in-vitro inhibitory effect on the lipopolysaccharide (LPS) induced production of pro-inflammatory cytokines TNF-α and IL-6 was studied in THP-1 cells. The in-vivo anti-arthritic activity was investigated in collagen-induced arthritis model in DBA/1J mice. The sustained release capsule formulation was developed and characterized for physicochemical and pharmacokinetic properties. RESULTS: Rohitukine and schumaniofioside A were found to be major chemical constituents of the botanical lead. The rohitukine-enriched fraction of D. binectariferum significantly reduced the production of both pro-inflammatory cytokines TNF-α and IL-6 (>50% inhibition at 3.12 µg/mL) in THP-1 cells. In LPS-treated wild-type mice model, the rohitukine-enriched fraction at 200 mg/kg (PO, QD) completely reduced serum TNF-α levels. In transgenic mice model (collagen-induced arthritis in DBA/1J mice), rohitukine-enriched fraction at 100 mg/kg (PO, QD) dose has resulted in >75% reduction of TNF-α/IL-6 serum levels, 68% reduction in anti-mouse type II collagen IgG1 antibody levels, decreased joint proteoglycan loss and reduced paw edema in DBA/1J mice. The sustained release capsule formulation of rohitukine-enriched fraction showed sustained-release of rohitukine over the period of 24 h, and resulted in an improved plasma-exposure of rohitukine in SD rats. CONCLUSIONS: The data presented herein demonstrated anti-arthritic potential of rohitukine-enriched fraction of D. binectariferum and this study will serve as the benchmark for further research on this botanical lead and developed sustained release capsule formulation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Cromonas/uso terapêutico , Meliaceae , Piperidinas/uso terapêutico , Extratos Vegetais/uso terapêutico , Choque Séptico/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacocinética , Artrite Experimental/patologia , Cromonas/farmacocinética , Citocinas/imunologia , Citocinas/metabolismo , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/uso terapêutico , Feminino , Articulações do Pé/efeitos dos fármacos , Articulações do Pé/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Piperidinas/farmacocinética , Extratos Vegetais/farmacocinética , Folhas de Planta , Ratos Sprague-Dawley , Choque Séptico/imunologia , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Pharm ; 570: 118683, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31513869

RESUMO

The objective of this study was to formulate an anticancer preclinical lead, IIIM-290, loaded in solid dispersions to enhance its solubility, dissolution, and oral pharmacokinetics. IIIM-290 is an in-house preclinical anticancer lead prepared by semisynthetic modification of the natural product rohitukine. It is an orally bioavailable Cdk inhibitor showing efficacy in xenograft models of pancreatic, colon and leukemia cancer. It demonstrated in vivo efficacy at a relatively higher dose owing to its poor aqueous solubility (~8.6 µg/mL). Binary and ternary solid dispersions containing PVP K-30, xanthan gum, and PEG-PPG-PEG were selected after solubility screening of various hydrophilic polymers. Several formulations with varying ratios of polymers, alone and in combination, were prepared and investigated for their effects on the solubility enhancement of IIIM-290. The binary solid dispersion VKB-SD75, prepared with PVP K-30 at the ratio of 1:4 w/w, was identified as the optimized composition that displayed 17-fold improvement in the aqueous solubility of IIIM-290. VKB-SD75 was scaled up to a 100-g scale. IIIM-290 and VKB-SD75 were evaluated for DSC, p-XRD, FTIR, 1H NMR, SEM, in vitro dissolution, and oral pharmacokinetics, as well as for in vivo anticancer activity in the Ehrlich solid tumor model. The oral administration of VKB-SD75 in BALB/c mice resulted in a 1.9-fold improvement in plasma exposure. These findings also correlated well when the formulation was administered to mice in the Ehrlich solid tumor model. The newly developed solid dispersion is expected to reduce the dose of IIIM-290 by ~40-50% in preclinical and clinical studies.


Assuntos
Antineoplásicos/química , Administração Oral , Animais , Antineoplásicos/metabolismo , Disponibilidade Biológica , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Polímeros/química , Propilenoglicóis/química , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
5.
J Pharm Biomed Anal ; 166: 1-5, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30590350

RESUMO

IIIM-290, an orally bioavailable preclinical candidate is effective in human xenograft models of leukemia, colon and pancreatic cancer. The promising preclinical data of this lead candidate has shown its potential for clinical development. As a part of its preclinical development, impurity profiling of pilot scale batches is one of the most important component of the CMC documentation. Herein, we report impurity profiling, its quantification in different scale-up batches and analytical method validation. Three impurities ranging from 0.09 to 1.25% in preclinical anticancer candidate, IIIM-290 were detected by validated HPLC method. The impurities (Imp-A, Imp-B and Imp-F) were isolated from the partially purified batch of IIIM-290 using semi-preparative HPLC. Isolated impurities were characterized by 1H, 13C NMR, FTIR and ESI-MS spectral data. Based on the characterization data, the sources of these impurities were identified as unreacted starting material (Imp-A), impurity from botanical raw material (Imp-B; impurity carried from starting material) and the chemically transformed product (Imp-F) of Imp-B, respectively.


Assuntos
Contaminação de Medicamentos , Benzopiranos/química , Cromatografia Líquida de Alta Pressão
6.
ACS Omega ; 3(7): 8365-8377, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30087943

RESUMO

IIIM-290, a semisynthetic derivative of natural product rohitukine, is an orally bioavailable Cdk inhibitor, efficacious in the xenograft models of colon, pancreatic, and leukemia cancer. Its low aqueous solubility (∼8.6 µg/mL) could be one of the reasons for achieving optimal in vivo efficacy relatively at a higher dose. Being a nitrogenous compound, salt formation was envisaged as one of the ideal approaches to enhance its solubility and dissolution profile. Thus, herein, a solubility-guided miniaturized 96-well plate salt screening protocol was devised for identification of the suitable salt form of this preclinical candidate. The solubility-guided strategy has resulted in the identification of hydrochloride as the most favorable counterion, resulting in 45-fold improvement in aqueous solubility. The HCl salt was then scaled up at a gram size and characterized using 1H and 13C NMR, scanning electron microscopy, powder X-ray diffraction, Fourier-transform infrared, and differential scanning calorimetry studies. The HCl salt displayed enhancement in the in vitro dissolution profile as well as improved plasma exposure in the pharmacokinetic study. The oral administration of the IIIM-290·HCl salt in BALB/c mice resulted in >1.5-fold improvement in areas under the curve, Cmax, and half-life. The prepared salt also did not alter its cyclin-dependent kinase (Cdk)-2 and Cdk-9 inhibition activity. This biopharmaceutically improved lead has a potential to investigate further in preclinical studies. The solubility-guided salt screening strategy implemented herein could be utilized for other preclinical leads.

7.
J Med Chem ; 61(23): 10345-10374, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29989814

RESUMO

Small-molecule natural products (NPs) have a long and successful track record of providing first-in-class drugs and pharmacophore (scaffolds) in all therapeutic areas, serving as a bridge between modern and traditional medicine. This trajectory has been remarkably successful in three key areas of modern therapeutics: cancers, infections, and CNS diseases. Beginning with the discovery of morphine 200 years ago, natural products have remained the primary source of new drugs/scaffolds for CNS diseases. In this perspective, we address the question: why are the majority of active compounds in the CNS domain natural products? Our analysis indicates that ∼84% approved drugs for CNS diseases are NPs or NP-inspired, and interestingly, 20 natural products provided more than 400 clinically approved CNS drugs. We have discussed unique physicochemical properties of NPs and NP-inspired vis-à-vis synthetic drugs, isoform selectivity, and evolutionary relationship, providing a rationale for increasing focus on natural product driven discovery for next-generation drugs for neurodegenerative diseases.


Assuntos
Produtos Biológicos/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Descoberta de Drogas , Humanos , Terapia de Alvo Molecular
8.
J Med Chem ; 61(4): 1664-1687, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29370702

RESUMO

Rohitukine (1), a chromone alkaloid isolated from Indian medicinal plant Dysoxylum binectariferum, has inspired the discovery of flavopiridol and riviciclib, both of which are bioavailable only via intravenous route. With the objective to address the oral bioavailability issue of this scaffold, four series of rohitukine derivatives were prepared and screened for Cdk inhibition and cellular antiproliferative activity. The 2,6-dichloro-styryl derivative IIIM-290 (11d) showed strong inhibition of Cdk-9/T1 (IC50 1.9 nM) kinase and Molt-4/MIAPaCa-2 cell growth (GI50 < 1.0 µM) and was found to be highly selective for cancer cells over normal fibroblast cells. It inhibited the cell growth of MIAPaCa-2 cells via caspase-dependent apoptosis. It achieved 71% oral bioavailability with in vivo efficacy in pancreatic, colon, and leukemia xenografts at 50 mg/kg, po. It did not have CYP/efflux-pump liability, was not mutagenic/genotoxic or cardiotoxic, and was metabolically stable. The preclinical data presented herein indicates the potential of 11d for advancement in clinical studies.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacocinética , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Disponibilidade Biológica , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacocinética , Descoberta de Drogas , Flavonoides/farmacocinética , Xenoenxertos , Humanos , Camundongos , Piperidinas/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-Atividade
9.
J Med Chem ; 60(23): 9470-9489, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29144137

RESUMO

In the present study, a novel series of 3-pyrimidinylazaindoles were designed and synthesized using a bioinformatics strategy as cyclin-dependent kinases CDK2 and CDK9 inhibitors, which play critical roles in the cell cycle control and regulation of cell transcription. The present approach gives new dimensions to the existing SAR and opens a new opportunity for the lead optimizations from comparatively inexpensive starting materials. The study led to the identification of the alternative lead candidate 4ab with a nanomolar potency against CDK2 and CDK9 and potent antiproliferative activities against a panel of tested tumor cell lines along with a better safety ratio of ∼33 in comparison to reported leads. In addition, the identified lead 4ab demonstrated a good solubility and an acceptable in vivo PK profile. The identified lead 4ab showed an in vivo efficacy in mouse triple-negative breast cancer (TNBC) syngeneic models with a TGI (tumor growth inhibition) of 90% without any mortality growth inhibition in comparison to reported leads.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Indóis/química , Indóis/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/farmacocinética , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
10.
Eur J Med Chem ; 129: 159-174, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28222316

RESUMO

The structure of alpha-napthoflavone (ANF), a potent inhibitor of CYP1A1 and CYP1B1, mimics the structure of chalcones. Two potent CYP1B1 inhibitors 7k (DMU2105) and 6j (DMU2139) have been identified from two series of synthetic pyridylchalcones. They inhibit human CYP1B1 enzyme bound to yeast-derived microsomes (Sacchrosomes™) with IC50 values of 10 and 9 nM, respectively, and show a very high level of selectivity towards CYP1B1 with respect to the IC50 values obtained with CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2C9 and CYP2C19 Sacchrosomes™. Both compounds also potently inhibit CYP1B1 expressed within 'live' recombinant yeast and human HEK293 kidney cells with IC50 values of 63, 65, and 4, 4 nM, respectively. Furthermore, the synthesized pyridylchalcones possess better solubility and lipophilicity values than ANF. Both compounds overcome cisplatin-resistance in HEK293 and A2780 cells which results from CYP1B1 overexpression. These potent cell-permeable and water-soluble CYP1B1 inhibitors are likely to have useful roles in the treatment of cancer, glaucoma, ischemia and obesity.


Assuntos
Chalconas/farmacologia , Inibidores Enzimáticos/farmacocinética , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Chalconas/síntese química , Chalconas/farmacocinética , Cisplatino , Citocromo P-450 CYP1B1/antagonistas & inibidores , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Células HEK293 , Compostos Heterocíclicos , Humanos
11.
J Ethnopharmacol ; 197: 218-230, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-27457691

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The poly-herbal formulation DB14201 is a new combination of ayurvedic ingredients for treatment of diabetes. The aim of present study was to investigate safety and in vivo efficacy of DB14201 extract. Further this work was aimed to develop, characterize and standardize DB14201 extract and develop it as a botanical drug. MATERIALS AND METHODS: The polyherbal extract was standardized using four chemical markers. The LC-MS/MS method was developed for identification and quantification of mangiferin, berberine, kaempferol and curcumin. The extract was standardized for heavy metal content, aflotoxins, and microbial tests. The mechanism of action of DB14201 extract was explored through glucose uptake by adipocytes, TNF-α production and free fatty acid release, in vitro, was studied using murine adipocytes (3T3-L1). The effect of extract on insulin release was evaluated using murine pancreatic beta cell (ß TC-6). The safety and in vivo efficacy of extract was studied using suitable animal model. Hematology and blood biochemistry parameters were also assessed. RESULTS: In vitro studies of DB14201 in murine adipocytes and murine pancreatic beta cells demonstrated the plausible mechanism of action of DB14201 could be through increase in glucose uptake and by stimulation of insulin release by RIN-5f cells. The microbial load, heavy metals were found to be within the AYUSH permissible limits and aflotoxins were absent. Preclinical efficacy studies in animal models proved the anti-diabetic potential of the extract. The preclinical acute dose toxicity study and 90-days repeated dose toxicity study of DB14201 extract in wistar rats by oral route indicated that the extract is safe up to 1000mg/kg dose. Hematology and blood biochemistry parameters were within the normal range. CONCLUSIONS: The data presented herein demonstrated anti-diabetic potential of developed DB14201 extract and this study will serve as the benchmark for the further research on this polyherbal formulation.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacologia , Extratos Vegetais/efeitos adversos , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Berberina/efeitos adversos , Berberina/farmacologia , Glicemia/efeitos dos fármacos , Cromatografia Líquida/métodos , Curcumina/efeitos adversos , Curcumina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Quempferóis/efeitos adversos , Quempferóis/farmacologia , Masculino , Metais Pesados/química , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem/métodos , Fator de Necrose Tumoral alfa/metabolismo , Xantonas/efeitos adversos , Xantonas/farmacologia
12.
Eur J Med Chem ; 122: 731-743, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27479483

RESUMO

Isoform-selective inhibition of PI3K-α has been identified as one of the important strategy to discover effective and safer anticancer agents. Herein, we report discovery of 'quinazoline' as a new chemotype for isoform-selective PI3K-α inhibitors. The indolyl substituted quinazoline 9u displayed selective inhibition of PI3K-α with IC50 value of 0.201 µM with >49.7 over PI3K-ß, and δ-isoforms. Quinazoline 9u also inhibited PI3K-γ with IC50 value of 0.750 µM (3.7 fold selective for α-versus γ-isoform). The isoform-selective inhibition was also demonstrated at protein-expression level by western-blot analysis in MCF-7 and PC-3 cells. The isoform-selective inhibitor 9u also showed inhibition of phospho-Akt levels in these cells. Quinazoline 9u showed in-vitro cytotoxicity in MCF-7 cells with GI50 of 7 µM, which was highly selective for cancer cells, as it was non-toxic to normal cells fR2, HEK293 and hGF (GI50 > 50 µM). Compound 9u at 25 mg/kg dose showed 62 and 37% TGI in Ehrlich Ascites Carcinoma and Ehrlich Solid Tumor mice models. In nutshell, our efforts to identify potent and efficacious PI3K inhibitors resulted in the discovery of a new class of isoform-selective PI3K-α inhibitors possessing promising in-vivo anticancer activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Quinazolinas/química , Quinazolinas/farmacologia , Animais , Células CACO-2 , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Camundongos , Permeabilidade , Quinazolinas/metabolismo , Solubilidade , Serina-Treonina Quinases TOR/antagonistas & inibidores
13.
Eur J Pharm Sci ; 92: 203-11, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27422078

RESUMO

Rohitukine is a medicinally important natural product which has inspired the discovery of two anticancer clinical candidates. Rohitukine is highly hydrophilic in nature which hampers its oral bioavailability. Thus, herein our objective was to improve the drug-like properties of rohitukine via prodrug-strategy. Various ester prodrugs were synthesized and studied for solubility, lipophilicity, chemical stability and enzymatic hydrolysis in plasma/esterase. All prodrugs displayed lower aqueous solubility and improved lipophilicity compared with rohitukine, which was in accordance with the criteria of compounds in drug-discovery. The stability of synthesized prodrugs was evaluated in buffers at different pH, SGF, SIF, rat plasma and in esterase enzyme. The rate of hydrolysis in all incubation media was dependent primarily on the acyl promoieties. Hexanoyl ester prodrug of rohitukine, 3d, was stable under chemical conditions; however it was completely hydrolyzed to rohitukine, in plasma and in esterase in 4h. Hexanoate ester 3d appeared to be the most promising prodrug as it remained intact at gastric/intestinal pH and was completely transformed to the parent compound in plasma as desired for an ideal prodrug. The data presented herein, will help in designing prodrugs with desired physicochemical properties in future in structurally similar chemotypes.


Assuntos
Cromonas/química , Piperidinas/química , Pró-Fármacos/química , 1-Octanol/química , Animais , Composição de Medicamentos , Estabilidade de Medicamentos , Esterases/química , Ésteres , Suco Gástrico/química , Concentração de Íons de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Secreções Intestinais/química , Plasma/química , Ratos , Solubilidade , Água/química
14.
Bioorg Med Chem Lett ; 26(15): 3457-63, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27363938

RESUMO

Rohitukine is a chromone alkaloid isolated from an Indian medicinal plant Dysoxylum binectariferum. This natural product has led to the discovery of two clinical candidates (flavopiridol and P276-00) for the treatment of cancer. Herein, for the first time we report an efficient protocol for isolation and purification of this precious natural product in a bulk-quantity from leaves (a renewable source) of D. binectariferum (>98% purity) without use of chromatography or any acid-base treatment. Despite of the fact that this scaffold has reached up to clinical stage, particularly for leukemia; however the antileukemic activity of a parent natural product has never been investigated. Furthermore, rohitukine has never been studied for cyclin-dependent kinase (Cdk) inhibition, kinase profiling and for its experimental physicochemical properties. Thus, herein, we report in vitro cytotoxicity of rohitukine in a panel of 20 cancer cell lines (including leukemia, pancreatic, prostate, breast and CNS) and 2 normal cell lines; kinase profiling, Cdk2/9 inhibition, and physicochemical properties (solubility and stability in biological medias, pKa, LogP, LogD). In cytotoxicity screening, rohitukine displayed promising activity in HL-60 and Molt-4 (leukemia) cell lines with GI50 of 10 and 12µM, respectively. It showed inhibition of Cdk2/A and Cdk9/T1 with IC50 values of 7.3 and 0.3µM, respectively. The key interactions of rohitukine with Cdk9 was also studied by molecular modeling. Rohitukine was found to be highly water soluble (Swater=10.3mg/mL) and its LogP value was -0.55. The ionization constant of rohitukine was found to be 5.83. Rohitukine was stable in various biological media's including rat plasma. The data presented herein will help in designing better anticancer agents in future.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cromonas/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Meliaceae/química , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Físico-Química , Cromonas/química , Cromonas/isolamento & purificação , Quinases Ciclina-Dependentes/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Piperidinas/química , Piperidinas/isolamento & purificação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Relação Estrutura-Atividade
15.
J Med Chem ; 59(12): 5922-8, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27227326

RESUMO

We describe the identification of 7-(prolinol-N-yl)-2-phenylamino-thiazolo[5,4-d]pyrimidines as a novel chemotype of non-nucleoside partial agonists for the A2A adenosine receptor (A2AAR). Molecular-modeling indicated that the (S)-2-hydroxymethylene-pyrrolidine could mimic the interactions of agonists' ribose, suggesting that this class of compounds could have agonistic properties. This was confirmed by functional assays on the A2AAR, where their efficacy could be associated with the presence of the 2-hydroxymethylene moiety. Additionally, the best compound displays promising affinity, selectivity profile, and physicochemical properties.


Assuntos
Agonistas do Receptor A2 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/farmacologia , Descoberta de Drogas , Pirimidinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Tiazóis/farmacologia , Humanos , Modelos Moleculares , Conformação Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
16.
Eur J Med Chem ; 107: 1-11, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26560048

RESUMO

The screening of IIIM natural products repository for P-gp modulatory activity in P-gp over-expressing human adenocarcinoma LS-180 cells led to the identification of 7 natural products viz. withaferin, podophyllotoxin, 3-demethylcolchicine, agnuside, reserpine, seseberecine and fascaplysin as P-gp inducers. Fascaplysin (6a), a marine-derived bis-indole alkaloid, was the most potent among all of them, showing induction of P-gp with EC50 value of 25 nM. P-gp induction is one of the recently targeted strategy to increase amyloid-ß clearance from Alzheimer brains. Thus, we pursued a medicinal chemistry of fascaplysin to establish its structure-activity relationship for P-gp induction activity. Four series of analogs viz. substituted quaternary fascaplysin analogs, D-ring opened quaternary analogs, D-ring opened non-quaternary analogs, and ß-carbolinium analogs were synthesized and screened for P-gp induction activity. Among the total of 48 analogs screened, only quaternary nitrogen containing analogs 6a-g and 10a, 10h-l displayed promising P-gp induction activity; whereas non-planar non-quaternary analogs 9a-m, 13a-n, 15a-h were devoid of this activity. The P-gp induction activity of best compounds was then confirmed by western-blot analysis, which indicated that fascaplysin (6a) along with 4,5-difluoro analog of fascaplysin 6f and D-ring opened analog 10j displayed 4-8 fold increase in P-gp expression in LS-180 cells at 1 µM. Additionally, compounds 6a and 6f also showed inhibition of acetylcholinestease (AChE), an enzyme responsible for neuronal loss in Alzheimer's disease. Thus, fascaplysin and its analogs showing promising P-gp induction along with AChE inhibition at 1 µM, with good safety window (LS-180: IC50 > 10 µM, hGF: 4 µM), clearly indicates their promise for development as an anti-Alzheimer agent.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Inibidores da Colinesterase/farmacologia , Indóis/química , Indóis/farmacologia , Relação Estrutura-Atividade , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular , Técnicas de Química Sintética , Inibidores da Colinesterase/química , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Indóis/síntese química , Simulação de Acoplamento Molecular , Solubilidade
17.
Org Biomol Chem ; 13(20): 5674-89, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25895604

RESUMO

Colchicine (1), a nature-derived microtubule polymerization inhibitor, develops multi-drug resistance in tumor cells due to its P-gp substrate and induction activity, which in turn leads to its rapid efflux from tumor cells. This auto-induction of the efflux of colchicine remains a major challenge to medicinal chemists. Based on structure-based molecular modeling, a series of new colchicine derivatives were designed and synthesized with a potential for reduced P-gp induction liability. Screening of the prepared derivatives for P-gp induction activity revealed that a number of derivatives possess remarkably lower P-gp-induction activity (>90% intracellular accumulation of rhodamine 123 in LS-180 cells) compared to the parent natural product colchicine (62% Rh123 accumulation in LS-180 cells). The reduced P-gp-induction activity of new derivatives may be due to their reduced ability to interact and change the conformation of P-gp. The synthesized derivatives were then screened for antiproliferative activity against two colon cancer cell lines including HCT-116 and Colo-205. The derivative 4o showed potent cytotoxicity in HCT-116 cells with IC50 of 0.04 µM with significantly reduced P-gp induction liability. Compound 4o also inhibited microtubule assembly and induced expression of pro-apoptotic protein p21. In an Ehrlich solid tumor mice model, compound 4o showed 38% TGI with no mortality at 2 mg kg(-1) dose (oral). Compound 4o, with potent in vitro and in vivo anticancer activity, significantly reduced P-gp induction activity and its excellent physicochemical and pharmacokinetic properties open up new opportunities for the colchicine scaffold.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acetamidas/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Ehrlich/patologia , Proliferação de Células/efeitos dos fármacos , Colchicina/análogos & derivados , Colchicina/farmacologia , Neoplasias do Colo/patologia , Moduladores de Tubulina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Acetamidas/química , Acetamidas/farmacocinética , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Western Blotting , Carcinoma de Ehrlich/tratamento farmacológico , Colchicina/química , Colchicina/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Conformação Proteica , Distribuição Tecidual , Moduladores de Tubulina/química , Células Tumorais Cultivadas
18.
J Med Chem ; 57(22): 9658-72, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25368960

RESUMO

Biphenyl-4-carboxylic acid-[2-(1H-indol-3-yl)-ethyl]-methylamide 1 (CA224) is a nonplanar analogue of fascaplysin (2) that specifically inhibits Cdk4-cyclin D1 in vitro. Compound 1 blocks the growth of cancer cells at G0/G1 phase of the cell cycle. It also blocks the cell cycle at G2/M phase, which is explained by the fact that it inhibits tubulin polymerization. Additionally, it acts as an enhancer of depolymerization for taxol-stabilized tubulin. Western blot analyses of p53-positive cancer cells treated with compound 1 indicated upregulation of p53, p21, and p27 proteins together with downregulation of cyclin B1 and Cdk1. Compound 1 selectively induces apoptosis of SV40 large T-antigen transformed cells and significantly reduces colony formation efficiency, in a dose-dependent manner, of lung cancer cells. It is efficacious at 1/10th of the MTD against human tumors derived from HCT-116 and NCI-H460 cells in SCID mouse models. The promising efficacy of compound 1 in human xenograft models as well as its excellent therapeutic window indicates its potential for clinical development.


Assuntos
Antineoplásicos/química , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Indóis/química , Peptídeos Cíclicos/química , Moduladores de Tubulina/química , Animais , Ciclo Celular , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Ciclina D1/química , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos SCID , Transplante de Neoplasias , Regulação para Cima
19.
Bioorg Med Chem Lett ; 24(20): 4865-70, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25240254

RESUMO

Embelin (1), a benzoquinone isolated from Embelia ribes is known to possess variety of biological activities. Despite of several promising biological activities, preclinical efforts on embelin were hampered because of its poor aqueous solubility. In order to address the solubility issue, herein, we have synthesized a series of Mannich products of embelin by treating it with various secondary amines. The synthesized compounds were screened for antiproliferative and antimicrobial activities. In cytotoxicity screening, the benzyl-piperidine linked derivative 8m was found to possess better antiproliferative activity compared to parent natural product embelin against a panel of cell lines including HCT-116, MCF-7, MIAPaCa-2 and PC-3 with IC50 values of 30, 41, 34 and 36 µM, respectively. The mechanistic study of compound 8m revealed that it exhibits cytotoxicity via induction of apoptosis and mitochondrial membrane potential loss. Further, the compounds were tested for antimicrobial activity where dimethylamino- 8a and piperidine linked derivative 8b displayed antibacterial activity against Staphylococcus aureus with MIC values of 8 and 16 µg/mL, respectively. Mannich derivatives did now show improved aqueous solubility, however their hydrochloride salts 8a·HCl, 8b·HCl and 8m·HCl showed significantly improved aqueous solubility without affecting biological activities of parent Mannich derivatives.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Benzoquinonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Benzoquinonas/síntese química , Benzoquinonas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Embelia/química , Células HCT116 , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
20.
J Med Chem ; 57(16): 7085-97, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25111439

RESUMO

Bergenin (1), a unique fused C-glycoside isolated from Bergenia species, possesses interesting anti-inflammatory and antipain activities. To study SAR of this scaffold, first-generation derivatives were synthesized and evaluated for inhibition of lymphocyte proliferation and production of pro-inflammatory cytokines. The C-7 substituted derivatives showed inhibition of IL-6 as well as TNF-α production. Bergenin and its most potent IL-6 inhibitor derivatives 4e and 4f were then investigated in a panel of in vitro and in vivo inflammation/arthritis models. These compounds significantly decreased the expression of NF-kB and IKK-ß in THP-1 cells. In in vivo study in BALB/c mice, a dose-dependent inhibition of SRBC-induced cytokines, reduction in humoral/cell-mediated immunity, and antibody titer was observed. The CIA study in DBA/1J mice indicated that compounds led to reduction in swelling of paws, cytokine levels, and anticollagen IgG1/IgG2a levels. The significant in vivo immunosuppressive efficacy of pyrano-isochromanones demonstrates the promise of this scaffold for development of next-generation antiarthritic drugs.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Artrite Experimental/tratamento farmacológico , Interleucina-6/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Benzopiranos/química , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Cromanos/química , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Imunidade Humoral/efeitos dos fármacos , Imunoglobulina G/metabolismo , Linfócitos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , NF-kappa B/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA