Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 115: 104326, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567619

RESUMO

Salmonella is known to survive in raw/pasteurized milk and cause foodborne outbreaks. Lactoferrin, present in milk from all animal sources, is an iron-binding glycoprotein that limits the availability of iron to pathogenic bacteria. Despite the presence of lactoferrins, Salmonella can grow in milk obtained from different animal sources. However, the mechanism by which Salmonella overcomes iron scarcity induced by lactoferrin in milk is not evaluated yet. Salmonella employs the DNA binding transcriptional regulator Fur (ferric update regulator) to mediate iron uptake during survival in iron deplete conditions. To understand the importance of Fur in Salmonella milk growth, we profiled the growth of Salmonella Typhimurium Δfur (ST4/74Δfur) in both bovine and camel milk. ST4/74Δfur was highly inhibited in milk compared to wild-type ST4/74, confirming the importance of Fur mediated regulation of iron metabolism in Salmonella milk growth. We further studied the biology of ST4/74Δfur to understand the importance of iron metabolism in Salmonella milk survival. Using increasing concentrations of FeCl3, and the antibiotic streptonigrin we show that iron accumulates in the cytoplasm of ST4/74Δfur. We hypothesized that the accumulated iron could activate oxidative stress via Fenton's reaction leading to growth inhibition. However, the inhibition of ST4/74Δfur in milk was not due to Fenton's reaction, but due to the 'iron scarce' conditions of milk and microaerophilic incubation conditions which made the presence of the fur gene indispensable for Salmonella milk growth. Subsequently, survival studies of 14 other transcriptional mutants of ST4/74 in milk confirmed that RpoE-mediated response to extracytoplasmic stress is also important for the survival of Salmonella in milk. Though we have data only for fur and rpoE, many other Salmonella transcriptional factors could play important roles in the growth of Salmonella in milk, a theme for future research on Salmonella milk biology. Nevertheless, our data provide early insights into the biology of milk-associated Salmonella.


Assuntos
Lactoferrina , Salmonella typhimurium , Animais , Bovinos , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas Repressoras/genética , Ferro/metabolismo , Leite/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Biomolecules ; 10(11)2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172035

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases and is characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta area. In the present study, treatment of EA for 1 week at a dose of 10 mg/kg body weight prior to MPTP (25 mg/kg body weight) was carried out. MPTP administration caused oxidative stress, as evidenced by decreased activities of superoxide dismutase and catalase, and the depletion of reduced glutathione with a concomitant rise in the lipid peroxidation product, malondialdehyde. It also significantly increased the pro-inflammatory cytokines and elevated the inflammatory mediators like cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Immunohistochemical analysis revealed a loss of dopamine neurons in the SNc area and a decrease in dopamine transporter in the striatum following MPTP administration. However, treatment with EA prior to MPTP injection significantly rescued the dopaminergic neurons and dopamine transporter. EA treatment further restored antioxidant enzymes, prevented the depletion of glutathione and inhibited lipid peroxidation, in addition to the attenuation of pro-inflammatory cytokines. EA also reduced the levels of COX-2 and iNOS. The findings of the present study demonstrate that EA protects against MPTP-induced PD and the observed neuroprotective effects can be attributed to its potent antioxidant and anti-inflammatory properties.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Ácido Elágico/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/patologia , Animais , Corpo Estriado/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA