Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4979, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533548

RESUMO

Proteome diversities and their biological functions are significantly amplified by post-translational modifications (PTMs) of proteins. Shotgun proteomics, which does not typically survey PTMs, provides an incomplete picture of the complexity of human biopsies in health and disease. Recent advances in mass spectrometry-based proteomic techniques that enrich and study PTMs are helping to uncover molecular detail from the cellular level to system-wide functions, including how the microbiome impacts human diseases. Protein heterogeneity and disease complexity are challenging factors that make it difficult to characterize and treat disease. The search for clinical biomarkers to characterize disease mechanisms and complexity related to patient diagnoses and treatment has proven challenging. Knowledge of PTMs is fundamentally lacking. Characterization of complex human samples that clarify the role of PTMs and the microbiome in human diseases will result in new discoveries. This review highlights the key role of proteomic techniques used to characterize unknown biological functions of PTMs derived from complex human biopsies. Through the integration of diverse methods used to profile PTMs, this review explores the genetic regulation of proteoforms, cells of origin expressing specific proteins, and several bioactive PTMs and their subsequent analyses by liquid chromatography and tandem mass spectrometry.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Proteoma , Biópsia
2.
Sci Rep ; 13(1): 2630, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788264

RESUMO

Gladiolus (Gladiolus grandiflorus Andrews) is a high-valued bulbous cut flower. However, the shorter postharvest life of the gladiolus, limits its marketing and commercial value. In the present investigation, the effect of lemon grass (LG) essential oil as an antimicrobial agent was studied towards increasing the vase life of gladiolus. The results revealed that as compared to control (distilled water), treatment with a lower concentration of 5 µL L-1 LG essential oil prolonged the vase life of gladiolus up to 11 days (d). Scanning Electron Microscope (SEM) observation indicated that the sample treated with 5 µL L-1 LG essential oil showed intact vasculature, suggesting reduced microbial blockage at the stem end which was further corroborated by microbial count. Biochemical analysis suggested an increased level of total soluble sugars, carotenoid content, lower MDA accumulation, and higher activity of antioxidant enzymes in LG treated flowers. Moreover, transcripts levels of genes associated with senescence viz., GgCyP1 and GgERS1a were downregulated, while expression of GDAD1 and antioxidant genes such as GgP5C5, GgPOD 1, GgMnSOD, and GgCAT1 were upregulated in LG treated cut spikes as compared to control. Among various treatments we have concluded that, the vase life of the gladiolus cut spike was improved along with the relative fresh flower weight and diameter of flower at the lower dose of 5 µL L-1 LG oil in the vase solution. Thus, LG oil as an eco-friendly agent has the potential to extend the postharvest life of cut flowers.


Assuntos
Cymbopogon , Iridaceae , Óleos Voláteis , Água/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Expressão Gênica
3.
Molecules ; 26(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204121

RESUMO

The ingestion of contaminated water and food is known to cause food illness. Moreover, on assessing the patients suffering from foodborne disease has revealed the role of microbes in such diseases. Concerning which different methods have been developed for protecting food from microbes, the treatment of food with chemicals has been reported to exhibit an unwanted organoleptic effect while also affecting the nutritional value of food. Owing to these challenges, the demand for natural food preservatives has substantially increased. Therefore, the interest of researchers and food industries has shifted towards fruit polyphenols as potent inhibitors of foodborne bacteria. Recently, numerous fruit polyphenols have been acclaimed for their ability to avert toxin production and biofilm formation. Furthermore, various studies have recommended using fruit polyphenols solely or in combination with chemical disinfectants and food preservatives. Currently, different nanoparticles have been synthesized using fruit polyphenols to curb the growth of pathogenic microbes. Hence, this review intends to summarize the current knowledge about fruit polyphenols as antibacterial agents against foodborne pathogens. Additionally, the application of different fruit extracts in synthesizing functionalized nanoparticles has also been discussed.


Assuntos
Bactérias/efeitos dos fármacos , Frutas/química , Polifenóis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Microbiologia de Alimentos , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Humanos , Nanopartículas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química
4.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261095

RESUMO

The use of metallic nanoparticles in engineering and biomedicine disciplines has gained considerable attention. Scientists are exploring new synthesis protocols of these substances considering their small size and lucrative antimicrobial potential. Among the most economical techniques of synthesis of metallic nanoparticles via chemical routes, which includes the use of chemicals as metal reducing agents, is considered to generate nanoparticles possessing toxicity and biological risk. This limitation of chemically synthesized nanoparticles has engendered the exploration for the ecofriendly synthesis process. Biological or green synthesis approaches have emerged as an effective solution to address the limitations of conventionally synthesized nanoparticles. Nanoparticles synthesized via biological entities obtained from plant extracts exhibit superior effect in comparison to chemical methods. Recently, conifer extracts have been found to be effective in synthesizing metallic nanoparticles through a highly regulated process. The current review highlights the importance of conifers and its extracts in synthesis of metallic nanoparticles. It also discusses the different applications of the conifer extract mediated metallic nanoparticles.


Assuntos
Química Verde , Nanopartículas Metálicas/química , Traqueófitas/química , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia
5.
J Fungi (Basel) ; 6(4)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317038

RESUMO

Research and innovation in nanoparticles (NPs) synthesis derived from biomaterials have gained much attention due to their unique characteristics, such as low-cost, easy synthesis methods, high water solubility, and eco-friendly nature. NPs derived from macrofungi, including various mushroom species, such as Agaricus bisporus, Pleurotus spp., Lentinus spp., and Ganoderma spp. are well known to possess high nutritional, immune-modulatory, antimicrobial (antibacterial, antifungal and antiviral), antioxidant, and anticancerous properties. Fungi have intracellular metal uptake ability and maximum wall binding capacity; because of which, they have high metal tolerance and bioaccumulation ability. Primarily, two methods have been comprehended in the literature to synthesize metal NPs from macrofungi, i.e., the intracellular method, which refers to NP synthesis inside fungal cells by transportation of ions in the presence of enzymes; and the extracellular method, which refers to the treatment of fungal biomolecules aqueous filtrate with a metal precursor. Pleurotus derived metal NPs are known to inhibit the growth of numerous foodborne pathogenic bacteria and fungi. To the best of our knowledge, there is no such review article reported in the literature describing the synthesis and complete application and mechanism of NPs derived from macrofungi. Herein, we intend to summarize the progressive research on macrofungi derived NPs regarding their synthesis as well as applications in the area of antimicrobial (antibacterial & antifungal), anticancer, antioxidant, catalytic and food preservation. Additionally, the challenges associated with NPs synthesis will also be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA