Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cancer Res ; 20(12): 1739-1750, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36135372

RESUMO

We identified resistance mechanisms to abiraterone acetate/prednisone (AA/P) in patients with metastatic castration-resistant prostate cancer (mCRPC) in the Prostate Cancer Medically Optimized Genome-Enhanced Therapy (PROMOTE) study.We analyzed whole-exome sequencing (WES) and RNA-sequencing data from 83 patients with metastatic biopsies before (V1) and after 12 weeks of AA/P treatment (V2). Resistance was determined by time to treatment change (TTTC).At V2, 18 and 11 of 58 patients had either short-term (median 3.6 months; range 1.4-4.5) or long-term (median 29 months; range 23.5-41.7) responses, respectively. Nonresponders had low expression of TGFBR3 and increased activation of the Wnt pathway, cell cycle, upregulation of AR variants, both pre- and posttreatment, with further deletion of AR inhibitor CDK11B posttreatment. Deletion of androgen processing genes, HSD17B11, CYP19A1 were observed in nonresponders posttreatment. Genes involved in cell cycle, DNA repair, Wnt-signaling, and Aurora kinase pathways were differentially expressed between the responder and non-responder at V2. Activation of Wnt signaling in nonresponder and deactivation of MYC or its target genes in responders was detected via SCN loss, somatic mutations, and transcriptomics. Upregulation of genes in the AURKA pathway are consistent with the activation of MYC regulated genes in nonresponders. Several genes in the AKT1 axis had increased mutation rate in nonresponders. We also found evidence of resistance via PDCD1 overexpression in responders. IMPLICATIONS: Finally, we identified candidates drugs to reverse AA/P resistance: topoisomerase inhibitors and drugs targeting the cell cycle via the MYC/AURKA/AURKB/TOP2A and/or PI3K_AKT_MTOR pathways.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Prednisona/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Aurora Quinase A , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Acetato de Abiraterona/efeitos adversos
2.
Mol Cancer Ther ; 20(12): 2317-2328, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34583982

RESUMO

The protein arginine methyltransferase 5 (PRMT5) methylates a variety of proteins involved in splicing, multiple signal transduction pathways, epigenetic control of gene expression, and mechanisms leading to protein expression required for cellular proliferation. Dysregulation of PRMT5 is associated with clinical features of several cancers, including lymphomas, lung cancer, and breast cancer. Here, we describe the characterization of JNJ-64619178, a novel, selective, and potent PRMT5 inhibitor, currently in clinical trials for patients with advanced solid tumors, non-Hodgkin's lymphoma, and lower-risk myelodysplastic syndrome. JNJ-64619178 demonstrated a prolonged inhibition of PRMT5 and potent antiproliferative activity in subsets of cancer cell lines derived from various histologies, including lung, breast, pancreatic, and hematological malignancies. In primary acute myelogenous leukemia samples, the presence of splicing factor mutations correlated with a higher ex vivo sensitivity to JNJ-64619178. Furthermore, the potent and unique mechanism of inhibition of JNJ-64619178, combined with highly optimized pharmacological properties, led to efficient tumor growth inhibition and regression in several xenograft models in vivo, with once-daily or intermittent oral-dosing schedules. An increase in splicing burden was observed upon JNJ-64619178 treatment. Overall, these observations support the continued clinical evaluation of JNJ-64619178 in patients with aberrant PRMT5 activity-driven tumors.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteína-Arginina N-Metiltransferases/efeitos dos fármacos , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Pirimidinas/farmacologia , Pirróis/farmacologia
3.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33566112

RESUMO

In this study, using single-cell RNA-seq, cell mass spectrometry, flow cytometry, and functional analysis, we characterized the heterogeneity of polymorphonuclear neutrophils (PMNs) in cancer. We describe three populations of PMNs in tumor-bearing mice: classical PMNs, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and activated PMN-MDSCs with potent immune suppressive activity. In spleens of mice, PMN-MDSCs gradually replaced PMNs during tumor progression. Activated PMN-MDSCs were found only in tumors, where they were present at the very early stages of the disease. These populations of PMNs in mice could be separated based on the expression of CD14. In peripheral blood of cancer patients, we identified two distinct populations of PMNs with characteristics of classical PMNs and PMN-MDSCs. The gene signature of tumor PMN-MDSCs was similar to that in mouse activated PMN-MDSCs and was closely associated with negative clinical outcome in cancer patients. Thus, we provide evidence that PMN-MDSCs are a distinct population of PMNs with unique features and potential for selective targeting opportunities.


Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfoma/imunologia , Neutrófilos/classificação , Neutrófilos/imunologia , Animais , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/sangue , Estudos de Casos e Controles , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/sangue , Linfoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Análise de Célula Única , Transcriptoma
4.
JCI Insight ; 3(23)2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30518680

RESUMO

CD141+ DC are implicated in antiviral and antitumor immunity. However, mechanistic studies in autoimmune disease are limited. This is the first study to our knowledge examining CD141+ DC in autoimmune disease, specifically inflammatory arthritis (IA). We identified significant enrichment of CD141+ DC in the inflamed synovial joint, which were transcriptionally distinct from IA and healthy control (HC) blood CD141+ DC and significantly more activated, and they exhibited increased responsiveness to TLR3. Synovial CD141+ DC represent a bone fide CD141+ DC population that is distinct from CD1c+ DC. Synovial CD141+ DC induced higher levels of CD4+ and CD8+ T cell activation compared with their peripheral blood counterparts, as made evident by expression of IFN-γ, TNF-α, and granulocyte-macrophage CSF (GMCSF). Autologous synovial CD141+ DC cocultures also induce higher levels of these cytokines, further highlighting their contribution to synovial inflammation. Synovial CD141+ DC-T cell interactions had the ability to further activate synovial fibroblasts, inducing adhesive and invasive pathogenic mechanisms. Furthermore, we identify a mechanism in which synovial CD141+ DC are activated, via ligation of the hypoxia-inducible immune-amplification receptor TREM-1, which increased synovial CD141+ DC activation, migratory capacity, and proinflammatory cytokines. Thus, synovial CD141+ DC display unique mechanistic and transcriptomic signatures, which are distinguishable from blood CD141+ DC and can contribute to synovial joint inflammation.


Assuntos
Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Artropatias/imunologia , Adulto , Antígenos CD1 , Antígenos de Superfície/sangue , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Citocinas/metabolismo , Feminino , Glicoproteínas , Humanos , Inflamação , Interferon gama/metabolismo , Ativação Linfocitária , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores Imunológicos , Membrana Sinovial , Trombomodulina , Receptor 3 Toll-Like/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo
6.
Cancer ; 124(6): 1216-1224, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29266182

RESUMO

BACKGROUND: Two androgen receptor (AR)-targeted therapies, enzalutamide and abiraterone acetate plus prednisone (abiraterone), have been approved for the treatment of metastatic castration-resistant prostate cancer (CRPC). Many patients respond to these agents, but both de novo and acquired resistance are common. The authors characterized resistant phenotypes that emerge after treatment with abiraterone or enzalutamide. METHODS: Patients who received abiraterone or enzalutamide in the course of routine clinical care were consented for serial blood collection. A proprietary system (CellSearch) was used to enumerate and enrich circulating tumor cells (CTCs). RNA-sequencing (RNA-seq) was performed on pools of up to 10 epithelial cell adhesion molecule (EpCAM)-positive/CD45-negative CTCs. The impact of gene expression changes observed in CTCs between patients who responded or were resistant to abiraterone/enzalutamide therapies was further explored in a model cell line system. RESULTS: RNA-seq data from CTCs identified mutations commonly associated with CRPC as well as novel mutations, including several in the ligand-binding domain of AR that could facilitate escape from AR-targeted agents. Ingenuity pathway analysis of differentially regulated genes identified the transforming growth factor ß (TGFß) and cyclin D1 (CCND1) signaling pathways as significantly upregulated in drug-resistant CTCs. Transfection experiments using enzalutamide-sensitive and enzalutamide-resistant LNCaP cells confirmed the involvement of SMAD family member 3, a key mediator of the TGFß pathway, and of CCND1 in resistance to enzalutamide treatment. CONCLUSIONS: The current results indicate that RNA-seq of CTCs representing abiraterone and enzalutamide sensitive and resistant states can identify potential mechanisms of resistance. Therapies targeting the downstream signaling mediated by SMAD family member 3 (SMAD3) and CCND1, such as cyclin-dependent kinase 4/cyclin-dependent kinase 6 inhibitors, could provide new therapeutic options for the treatment of antiandrogen-resistant disease. Cancer 2018;124:1216-24. © 2017 American Cancer Society.


Assuntos
Antagonistas de Androgênios/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Acetato de Abiraterona/farmacologia , Acetato de Abiraterona/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzamidas , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/metabolismo , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(51): E10981-E10990, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203668

RESUMO

Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.


Assuntos
Epigênese Genética/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Interferon Tipo I/metabolismo , Neoplasias Ovarianas/etiologia , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos , Azacitidina/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Immunol ; 199(12): 4091-4102, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29127145

RESUMO

T cell expression of TIM-3 following Ag encounter has been associated with a continuum of functional states ranging from effector memory T cells to exhaustion. We have designed an in vitro culture system to specifically address the impact of anti-TIM-3/TIM-3 engagement on human Ag-specific CD8 T cells during a normal response to Ag and found that anti-TIM-3 treatment enhances T cell function. In our in vitro T cell culture system, MART1-specific CD8 T cells were expanded from healthy donors using artificial APCs. To ensure that the T cells were the only source of TIM-3, cells were rechallenged with peptide-loaded artificial APCs in the presence of anti-TIM-3 Ab. In these conditions, anti-TIM-3 treatment promotes generation of effector T cells as shown by acquisition of an activated phenotype, increased cytokine production, enhanced proliferation, and a transcription program associated with T cell differentiation. Activation of mTORC1 has been previously demonstrated to enhance CD8 T cell effector function and differentiation. Anti-TIM-3 drives CD8 T cell differentiation through activation of the mTORC1 as evidenced by increased levels of phosphorylated S6 protein and rhebl1 transcript. Altogether these findings suggest that anti-TIM-3, together with Ag, drives differentiation in favor of effector T cells via the activation of mTOR pathway. To our knowledge, this is the first report demonstrating that TIM-3 engagement during Ag stimulation directly influences T cell differentiation through mTORC1.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Memória Imunológica/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Anticorpos Monoclonais/farmacologia , Divisão Celular , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Humanos , Ativação Linfocitária , Linfocinas/biossíntese , Linfocinas/genética , Antígeno MART-1/imunologia , Fosforilação , Processamento de Proteína Pós-Traducional , Especificidade do Receptor de Antígeno de Linfócitos T , Proteínas ras/biossíntese , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA