Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 103: 290-302, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25255945

RESUMO

Gamma-aminobutyric acid (GABA) and glutamate (Glu) are the major neurotransmitters in the brain. They are crucial for the functioning of healthy brain and their alteration is a major mechanism in the pathophysiology of many neuro-psychiatric disorders. Magnetic resonance spectroscopy (MRS) is the only way to measure GABA and Glu non-invasively in vivo. GABA detection is particularly challenging and requires special MRS techniques. The most popular is MEscher-GArwood (MEGA) difference editing with single-voxel Point RESolved Spectroscopy (PRESS) localization. This technique has three major limitations: a) MEGA editing is a subtraction technique, hence is very sensitive to scanner instabilities and motion artifacts. b) PRESS is prone to localization errors at high fields (≥3T) that compromise accurate quantification. c) Single-voxel spectroscopy can (similar to a biopsy) only probe steady GABA and Glu levels in a single location at a time. To mitigate these problems, we implemented a 3D MEGA-editing MRS imaging sequence with the following three features: a) Real-time motion correction, dynamic shim updates, and selective reacquisition to eliminate subtraction artifacts due to scanner instabilities and subject motion. b) Localization by Adiabatic SElective Refocusing (LASER) to improve the localization accuracy and signal-to-noise ratio. c) K-space encoding via a weighted stack of spirals provides 3D metabolic mapping with flexible scan times. Simulations, phantom and in vivo experiments prove that our MEGA-LASER sequence enables 3D mapping of GABA+ and Glx (Glutamate+Gluatmine), by providing 1.66 times larger signal for the 3.02ppm multiplet of GABA+ compared to MEGA-PRESS, leading to clinically feasible scan times for 3D brain imaging. Hence, our sequence allows accurate and robust 3D-mapping of brain GABA+ and Glx levels to be performed at clinical 3T MR scanners for use in neuroscience and clinical applications.


Assuntos
Encéfalo/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Processamento de Sinais Assistido por Computador , Ácido gama-Aminobutírico/análise , Adulto , Artefatos , Química Encefálica/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino
2.
Magn Reson Med ; 72(3): 770-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24285593

RESUMO

PURPOSE: To improve slice coverage of gradient echo spin echo (GESE) sequences for dynamic susceptibility contrast (DSC) MRI using a simultaneous-multiple-slice (SMS) method. METHODS: Data were acquired on 3 Tesla (T) MR scanners with a 32-channel head coil. To evaluate use of SMS for DSC, an SMS GESE sequence with two-fold slice coverage and same temporal sampling was compared with a standard GESE sequence, both with 2× in-plane acceleration. A signal to noise ratio (SNR) comparison was performed on one healthy subject. Additionally, data with Gadolinium injection were collected on three patients with glioblastoma using both sequences, and perfusion analysis was performed on healthy tissues as well as on tumor. RESULTS: Retained SNR of SMS DSC is 90% for a gradient echo (GE) and 99% for a spin echo (SE) acquisition, compared with a standard acquisition without slice acceleration. Comparing cerebral blood volume maps, it was observed that the results of standard and SMS acquisitions are comparable for both GE and SE images. CONCLUSION: Two-fold slice accelerated DSC MRI achieves similar SNR and perfusion metrics as a standard acquisition, while allowing a significant increase in slice coverage of the brain. The results also point to a possibility to improve temporal sampling rate, while retaining the same slice coverage.


Assuntos
Neoplasias Encefálicas/patologia , Imagem Ecoplanar/métodos , Glioblastoma/patologia , Artefatos , Circulação Cerebrovascular , Meios de Contraste , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Sensibilidade e Especificidade , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA