Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1318797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362155

RESUMO

P66Shc and Rac1 proteins are responsible for tumor-associated inflammation, particularly in brain tumors characterized by elevated oxidative stress and increased reactive oxygen species (ROS) production. Quercetin, a natural polyphenolic flavonoid, is a well-known redox modulator with anticancer properties. It has the capacity to cross the blood-brain barrier and, thus, could be a possible drug against brain tumors. In this study, we explored the effect of quercetin on Rac1/p66Shc-mediated tumor cell inflammation, which is the principal pathway for the generation of ROS in brain cells. Glioma cells transfected with Rac1, p66Shc, or both were treated with varying concentrations of quercetin for different time points. Quercetin significantly reduced the viability and migration of cells in an ROS-dependent manner with the concomitant inhibition of Rac1/p66Shc expression and ROS production in naïve and Rac1/p66Shc-transfected cell lines, suggestive of preventing Rac1 activation. Through molecular docking simulations, we observed that quercetin showed the best binding compared to other known Rac1 inhibitors and specifically blocked the GTP-binding site in the A-loop of Rac1 to prevent GTP binding and, thus, Rac1 activation. We conclude that quercetin exerts its anticancer effects via the modulation of Rac1-p66Shc signaling by specifically inhibiting Rac1 activation, thus restraining the production of ROS and tumor growth.

2.
Crit Rev Food Sci Nutr ; 62(28): 7773-7800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33939555

RESUMO

Muscle proteins undergo several processes before being ready in a final consumable form. All these processes affect the digestibility of muscle proteins and subsequent release of amino acids and peptides during digestion in the human gut. The present review examines the effects of different processing techniques, such as curing, drying, ripening, comminution, aging, and marination on the digestibility of muscle proteins. The review also examines how the source of muscle proteins alters the gastrointestinal protein digestion. Processing techniques affect the structural and functional properties of muscle proteins and can affect their digestibility negatively or positively depending on the processing conditions. Some of these techniques, such as aging and mincing, can induce favorable changes in muscle proteins, such as partial unfolding or exposure of cleavage sites, and increase susceptibility to hydrolysis by digestive enzymes whereas others, such as drying and marination, can induce unfavorable changes, such as severe cross-linking, protein aggregation, oxidation induced changes or increased disulfide (S-S) bond content, thereby decreasing proteolysis. The underlying mechanisms have been discussed in detail and the conclusions drawn in the light of existing knowledge provide information with potential industrial importance.


Assuntos
Digestão , Proteínas Musculares , Aminoácidos , Dissulfetos , Humanos , Proteínas Musculares/química , Peptídeos , Agregados Proteicos
3.
Compr Rev Food Sci Food Saf ; 20(5): 4703-4738, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34355496

RESUMO

Egg and egg products are a rich source of highly bioavailable animal proteins. Several processing technologies can affect the structural and functional properties of these proteins differently and can influence their fate inside the gastrointestinal tract. The present review examines some of the processing technologies for improving egg protein digestibility and discusses how different processing conditions affect the digestibility of egg proteins under gastrointestinal digestion environments. To provide up-to-date information, most of the studies included in this review have been published in the last 5 years on different aspects of egg protein digestibility. Digestibility of egg proteins can be improved by employing some processing technologies that are able to improve the susceptibility of egg proteins to gastrointestinal proteases. Processing technologies, such as pulsed electric field, high-pressure, and ultrasound, can induce conformational and microstructural changes that lead to unfolding of the polypeptides and expose active sites for further interactions. These changes can enhance the accessibility of digestive proteases to cleavage sites. Some of these technologies may inactivate some egg proteins that are enzyme inhibitors, such as trypsin inhibitors. The underlying mechanisms of how different technologies mediate the egg protein digestibility have been discussed in detail. The proteolysis patterns and digestibility of the processed egg proteins are not always predictable and depends on the processing conditions. Empirical input is required to tailor the optimization of processing conditions for favorable effects on protein digestibility.


Assuntos
Digestão , Proteínas do Ovo , Animais , Peptídeos , Proteólise , Inibidores da Tripsina
4.
J Biomol Struct Dyn ; 38(17): 5253-5265, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31920158

RESUMO

Lysophosphatidic acid (LPA) is a multifunctional regulator of actin cytoskeleton that exerts a dramatic impact on the actin cytoskeleton to build a platform for diverse cellular processes including growth cone guidance, neurite retraction and cell motility. It has been implicated in the formation and dissociation of complexes between actin and actin binding proteins, supporting its role in actin remodeling. Several studies point towards its ability to facilitate formation of special cellular structures including focal adhesions and actin stress fibres by phosphoregulation of several actin associated proteins and their multiple regulatory kinases and phosphatases. In addition, multiple levels of crosstalk among the signaling cascades activated by LPA, affect actin cytoskeleton-mediated cell migration and chemotaxis which in turn play a crucial role in cancer metastasis. In the current review, we have attempted to highlight the role of LPA as an actin modulator which functions by controlling activities of specific cellular proteins that underlie mechanisms employed in cytoskeletal and pathophysiological events within the cell. Further studies on the actin affecting/remodeling activity of LPA in different cell types will no doubt throw up many surprises essential to gain a full understanding of its contribution in physiological processes as well as in diseases.Communicated by Ramaswamy H. Sarma.


Assuntos
Actinas , Lisofosfolipídeos , Citoesqueleto/metabolismo , Transdução de Sinais
5.
Neuromolecular Med ; 16(1): 137-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24085465

RESUMO

We have previously shown the involvement of p66shc in mediating apoptosis. Here, we demonstrate the novel mechanism of ß-Amyloid-induced toxicity in the mammalian cells. ß-Amyloid leads to the phosphorylation of p66shc at the serine 36 residue and activates MKK6, by mediating the phosphorylation at serine 207 residue. Treatment of cells with antioxidants blocks ß-Amyloid-induced serine phosphorylation of MKK6, reactive oxygen species (ROS) generation, and hence protected cells against ß-Amyloid-induced cell death. Our results indicate that serine phosphorylation of p66shc is carried out by active MKK6. MKK6 knock-down resulted in decreased serine 36 phosphorylation of p66shc. Co-immunoprecipitation results demonstrate a direct physical association between p66shc and WT MKK6, but not with its mutants. Increase in ß-Amyloid-induced ROS production was observed in the presence of MKK6 and p66shc, when compared to triple mutant of MKK6 (inactive) and S36 mutant of p66shc. ROS scavengers and knock-down against p66shc, and MKK6 significantly decreased the endogenous level of active p66shc, ROS production, and cell death. Finally, we show that the MKK6-p66shc complex mediates ß-Amyloid-evoked apoptotic cell death.


Assuntos
Apoptose/fisiologia , MAP Quinase Quinase 6/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/efeitos dos fármacos , Proteínas Adaptadoras da Sinalização Shc/fisiologia , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , MAP Quinase Quinase 6/antagonistas & inibidores , MAP Quinase Quinase 6/genética , Sistema de Sinalização das MAP Quinases , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Estresse Oxidativo , Fragmentos de Peptídeos/toxicidade , Fosforilação , Fosfosserina/química , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ratos , Espécies Reativas de Oxigênio , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
6.
Cell Mol Life Sci ; 70(14): 2533-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23263165

RESUMO

Syntrophins are a family of cytoplasmic membrane-associated adaptor proteins, characterized by the presence of a unique domain organization comprised of a C-terminal syntrophin unique (SU) domain and an N-terminal pleckstrin homology (PH) domain that is split by insertion of a PDZ domain. Syntrophins have been recognized as an important component of many signaling events, and they seem to function more like the cell's own personal 'Santa Claus' that serves to 'gift' various signaling complexes with precise proteins that they 'wish for', and at the same time care enough for the spatial, temporal control of these signaling events, maintaining overall smooth functioning and general happiness of the cell. Syntrophins not only associate various ion channels and signaling proteins to the dystrophin-associated protein complex (DAPC), via a direct interaction with dystrophin protein but also serve as a link between the extracellular matrix and the intracellular downstream targets and cell cytoskeleton by interacting with F-actin. They play an important role in regulating the postsynaptic signal transduction, sarcolemmal localization of nNOS, EphA4 signaling at the neuromuscular junction, and G-protein mediated signaling. In our previous work, we reported a differential expression pattern of alpha-1-syntrophin (SNTA1) protein in esophageal and breast carcinomas. Implicated in several other pathologies, like cardiac dys-functioning, muscular dystrophies, diabetes, etc., these proteins provide a lot of scope for further studies. The present review focuses on the role of syntrophins in membrane targeting and regulation of cellular proteins, while highlighting their relevance in possible development and/or progression of pathologies including cancer which we have recently demonstrated.


Assuntos
Proteínas Associadas à Distrofina/metabolismo , Cromossomos/metabolismo , Proteínas Associadas à Distrofina/química , Humanos , Canais Iônicos/química , Canais Iônicos/metabolismo , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Estrutura Terciária de Proteína , Transdução de Sinais
7.
Dis Markers ; 32(4): 273-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22430194

RESUMO

The expression of E3B1/ABI-1 protein and its role in cancer progression and prognosis are largely unknown in the majority of solid tumors. In this study, we examined the expression pattern of E3B1/ABI-1 protein in histologically confirmed cases of esophageal (squamous cell carcinoma and adenocarcinoma), gastro-esophageal junction, colorectal cancers and corresponding normal tissues freshly resected from a cohort of 135 patients, by Western Blotting and Immunofluorescence Staining. The protein is present in its phosphorylated form in cells and tissues. Depending on the extent of phosphorylation it is either present in hyper-phosphorylated (M. Wt. 72 kDa) form or in hypo-phosphorylated form (M. Wt. 68 kDa and 65 kDa). A thorough analysis revealed that expression of E3B1/ABI-1 protein is significantly decreased in esophageal, gastro-esophageal junction and colorectal carcinomas irrespective of age, gender, dietary and smoking habits of the patients. The decrease in expression of E3B1/ABI-1 was consistently observed for all the three isoforms. However, the decrease in the expression of isoforms varied with different forms of cancers. Down-regulation of E3B1/ABI-1 expression in human carcinomas may play a critical role in tumor progression and in determining disease prognosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenocarcinoma/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas do Citoesqueleto/genética , Regulação para Baixo , Neoplasias Gastrointestinais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proteínas do Citoesqueleto/metabolismo , Feminino , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
Biomarkers ; 16(1): 31-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21091386

RESUMO

We studied the expression of α1-syntrophin (SNTA1) protein in histologically confirmed esophageal, stomach, lung, colon, rectal and breast cancerous tissue samples. Our results suggest a significant decrease in the expression level of SNTA1 protein in both esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) compared with their respective controls while a significant increase in expression of SNTA1 protein compared with the normal tissue was observed in breast carcinoma samples. No significant difference in expression of SNTA1 protein was observed in stomach, lung, colon and rectal cancers. Our results suggest that SNTA1 has a role in carcinogenesis and could possibly be used as a novel diagnostic or prognostic marker in esophageal and breast cancers.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Neoplasias/metabolismo , Adenocarcinoma/metabolismo , Adulto , Biomarcadores/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma de Células Escamosas/metabolismo , Regulação para Baixo , Neoplasias Esofágicas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima
9.
Cell Commun Signal ; 8: 13, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20565814

RESUMO

Members of Shc (src homology and collagen homology) family, p46shc, p52shc, p66shc have known to be related to cell proliferation and carcinogenesis. Whereas p46shc and p52shc drive the reaction forward, the role of p66shc in cancers remains to be understood clearly. Hence, their expression in cancers needs to be evaluated carefully so that Shc analysis may provide prognostic information in the development of carcinogenesis. In the present study, the expression of p66shc and its associate targets namely Eps8 (epidermal pathway substrate 8), Rac1 (ras-related C3 botulinum toxin substrate1) and Grb2 (growth factor receptor bound protein 2) were examined in fresh tissue specimens from patients with esophageal squamous cell carcinoma and esophageal adenocarcinoma using western blot analysis. A thorough analysis of both esophageal squamous cell carcinoma and adenocarcinoma showed p66shc expression to be significantly higher in both types of carcinomas as compared to the controls. The controls of adenocarcinoma show a higher basal expression level of p66shc as compared to the controls of squamous cell carcinoma. The expression level of downstream targets of p66shc i.e., eps8 and rac1 was also found to be consistently higher in human esophageal carcinomas, and hence correlated positively with p66shc expression. However the expression of grb2 was found to be equal in both esophageal squamous cell carcinoma and adenocarcinoma. The above results suggest that the pathway operated by p66shc in cancers does not involve the participation of Ras and Grb2 as downstream targets instead it operates the pathway involving Eps8 and Rac1 proteins. From the results it is also suggestive that p66shc may have a role in the regulation of esophageal carcinomas and represents a possible mechanism of signaling for the development of squamous cell carcinoma and adenocarcinoma of esophagus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA