RESUMO
Breast cancer is the most prevalent cancer in women around the world, having a sudden spread nowadays because of the poor sedentary lifestyle of people. Comprising several subtypes, one of the most dangerous and aggressive ones is triple-negative breast cancer or TNBC. Even though conventional surgical approaches like single and double mastectomy and preventive chemotherapeutic approaches are available, they are not selective to cancer cells and are only for symptomatic treatment. A new branch called nanotechnology has emerged in the last few decades that offers various novel characteristics, such as size in nanometric scale, enhanced adherence to multiple targeting moieties, active and passive targeting, controlled release, and site-specific targeting. Among various nanotherapeutic approaches like dendrimers, lipid-structured nanocarriers, carbon nanotubes, etc., nanoparticle targeted therapeutics can be termed the best among all for their specific cytotoxicity to cancer cells and increased bioavailability to a target site. This review focuses on the types and molecular pathways involving TNBC, existing treatment strategies, various nanotechnological approaches like exosomes, carbon nanotubes, dendrimers, lipid, and carbon-based nanocarriers, and especially various nanoparticles (NPs) like polymeric, photodynamic, peptide conjugated, antibody-conjugated, metallic, inorganic, natural product capped, and CRISPR based nanoparticles already approved for treatment or are under clinical and pre-clinical trials for TNBC.
Assuntos
Dendrímeros , Nanotubos de Carbono , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Dendrímeros/uso terapêutico , Mastectomia , Nanotecnologia , LipídeosRESUMO
BACKGROUND: AdipoRon is the first synthetic analog of endogenous adiponectin, an adipose tissue-derived hormone. AdipoRon possesses pharmacological properties similar to adiponectin and its ability to bind and activate the adipoR1 and adipoR2 receptors makes it a suitable candidate for the treatment of a multitude of disorders. OBJECTIVE: In the present review, an attempt was made to compile and discuss the efficacy of adipoRon against various disorders. RESULTS: AdipoRon is a drug that acts not only in metabolic diseases but in other conditions unrelated to energy metabolism. It is well- reported that adipoRon exhibits strong anti-obesity, anti-diabetic, anticancer, anti-depressant, anti-ischemic, anti-hypertrophic properties and also improves conditions like post-traumatic stress disorder, anxiety, and systemic sclerosis. CONCLUSION: A lot is known about its effects in experimental systems, but the translation of this knowledge to the clinic requires studies which, for many of the potential target conditions, have yet to be carried out. The beneficial effects of AdipoRon in novel clinical conditions will suggest an underlying pathophysiological role of adiponectin and its receptors in previously unsuspected settings.