Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
JCI Insight ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190500

RESUMO

Tumor-educated platelets (TEPs) are a potential method of liquid biopsy for the diagnosis and monitoring of cancer. However, the mechanism underlying tumor education of platelets is not known, and transcripts associated with TEPs are often not tumor-associated transcripts. We demonstrated that direct tumor transfer of transcripts to circulating platelets is an unlikely source of the TEP signal. We used CDSeq, a latent Dirichlet allocation algorithm, to deconvolute the TEP signal in blood samples from patients with glioblastoma. We demonstrated that a substantial proportion of transcripts in the platelet transcriptome are derived from non-platelet cells, and the use of this algorithm allows the removal of contaminant transcripts. Furthermore, we used the results of this algorithm to demonstrate that TEPs represent a subset of more activated platelets, which also contain transcripts normally associated with non-platelet inflammatory cells, suggesting that these inflammatory cells, possibly in the tumor microenvironment, transfer transcripts to platelets that are then found in circulation. Our analysis suggests a useful and efficient method of processing TEP transcriptomic data to enable the isolation of a unique TEP signal associated with specific tumors.

2.
Neuro Oncol ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126294

RESUMO

BACKGROUND: Human gliomas are classified using isocitrate dehydrogenase (IDH) status as a prognosticator; however, the influence of genetic differences and treatment effects on ensuing immunity remains unclear. METHODS: In this study, we used sequential single-cell transcriptomics on 144,678 and spectral cytometry on over two million immune cells encompassing 48 human gliomas to decipher their immune landscape. RESULTS: We identified 22 distinct immune cell types that contribute to glioma immunity. Specifically, brain-resident microglia (MG) were reduced with a concomitant increase in CD8+ T lymphocytes during glioma recurrence independent of IDH status. In contrast, IDH-wild-type-associated patterns, such as an abundance of antigen-presenting cell-like MG and cytotoxic CD8+ T cells, were observed. Beyond elucidating the differences in IDH, relapse, and treatment-associated immunity, we discovered novel inflammatory MG subpopulations expressing granulysin, a cytotoxic peptide, which is otherwise expressed in lymphocytes only. Furthermore, we provide a robust genomic framework for defining macrophage polarization beyond M1/M2 paradigm and reference signatures of glioma-specific tumor immune microenvironment (termed Glio-TIME-36) for deconvoluting transcriptomic datasets. CONCLUSIONS: This study provides advanced optics of the human pan-glioma immune contexture as a valuable guide for translational and clinical applications.

3.
Cell Rep Med ; 5(8): 101658, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053460

RESUMO

The DNA damage response (DDR) and the blood-tumor barrier (BTB) restrict chemotherapeutic success for primary brain tumors like glioblastomas (GBMs). Coherently, GBMs almost invariably relapse with fatal outcomes. Here, we show that the interaction of GBM and myeloid cells simultaneously induces chemoresistance on the genetic and vascular levels by activating GP130 receptor signaling, which can be addressed therapeutically. We provide data from transcriptomic and immunohistochemical screens with human brain material and pharmacological experiments with a humanized organotypic GBM model, proteomics, transcriptomics, and cell-based assays and report that nanomolar concentrations of the signaling peptide humanin promote temozolomide (TMZ) resistance through DDR activation. GBM mouse models recapitulating intratumoral humanin release show accelerated BTB formation. GP130 blockade attenuates both DDR activity and BTB formation, resulting in improved preclinical chemotherapeutic efficacy. Altogether, we describe an overarching mechanism for TMZ resistance and outline a translatable strategy with predictive markers to improve chemotherapy for GBMs.


Assuntos
Neoplasias Encefálicas , Receptor gp130 de Citocina , Resistencia a Medicamentos Antineoplásicos , Células Mieloides , Transdução de Sinais , Temozolomida , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Camundongos , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/genética , Células Mieloides/metabolismo , Células Mieloides/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Glioma/patologia , Glioma/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Dano ao DNA/efeitos dos fármacos
4.
Front Oncol ; 14: 1403052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912065

RESUMO

Introduction: Vestigial-like 1 (VGLL1) is a co-transcriptional activator that binds to TEA domain-containing transcription factors (TEADs). Its expression is upregulated in a variety of aggressive cancer types, including pancreatic and basal-like breast cancer, and increased transcription of VGLL1 is strongly correlated with poor prognosis and decreased overall patient survival. In normal tissues, VGLL1 is most highly expressed within placental trophoblast cells, which share the common attributes of rapid cellular proliferation and invasion with tumor cells. The impact of VGLL1 in cancer has not been fully elucidated and no VGLL1-targeted therapy currently exists. Methods: The aim of this study was to evaluate the cellular function and downstream genomic targets of VGLL1 in placental, pancreatic, and breast cancer cells. Functional assays were employed to assess the role of VGLL1 in cellular invasion and proliferation, and ChIP-seq and RNAseq assays were performed to identify VGLL1 target genes and potential impact using pathway analysis. Results: ChIP-seq analysis identified eight transcription factors with a VGLL1-binding motif that were common between all three cell types, including TEAD1-4, AP-1, and GATA6, and revealed ~3,000 shared genes with which VGLL1 interacts. Furthermore, increased VGLL1 expression led to an enhancement of cell invasion and proliferation, which was supported by RNAseq analysis showing transcriptional changes in several genes known to be involved in these processes. Discussion: This work expands our mechanistic understanding of VGLL1 function in tumor cells and provides a strong rationale for developing VGLL1-targeted therapies for treating cancer patients.

5.
Neuro Oncol ; 26(5): 826-839, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237157

RESUMO

BACKGROUND: Glioblastomas (GBMs) are central nervous system tumors that resist standard-of-care interventions and even immune checkpoint blockade. Myeloid cells in the tumor microenvironment can contribute to GBM progression; therefore, emerging immunotherapeutic approaches include reprogramming these cells to achieve desirable antitumor activity. Triggering receptor expressed on myeloid cells 2 (TREM2) is a myeloid signaling regulator that has been implicated in a variety of cancers and neurological diseases with contrasting functions, but its role in GBM immunopathology and progression is still under investigation. METHODS: Our reverse translational investigations leveraged single-cell RNA sequencing and cytometry of human gliomas to characterize TREM2 expression across myeloid subpopulations. Using 2 distinct murine glioma models, we examined the role of Trem2 on tumor progression and immune modulation of myeloid cells. Furthermore, we designed a method of tracking phagocytosis of glioma cells in vivo and employed in vitro assays to mechanistically understand the influence of TREM2 signaling on tumor uptake. RESULTS: We discovered that TREM2 expression does not correlate with immunosuppressive pathways, but rather showed strong a positive association with the canonical phagocytosis markers lysozyme (LYZ) and macrophage scavenger receptor (CD163) in gliomas. While Trem2 deficiency was found to be dispensable for gliomagenesis, Trem2+ myeloid cells display enhanced tumor uptake compared to Trem2- cells. Mechanistically, we demonstrate that TREM2 mediates phagocytosis via Syk signaling. CONCLUSIONS: These results indicate that TREM2 is not associated with immunosuppression in gliomas. Instead, TREM2 is an important regulator of phagocytosis that may be exploited as a potential therapeutic strategy for brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glicoproteínas de Membrana , Fagocitose , Receptores Imunológicos , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Humanos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Microambiente Tumoral , Células Mieloides/metabolismo , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Transdução de Sinais
6.
Cancer Cell ; 42(1): 85-100.e6, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38157865

RESUMO

Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.


Assuntos
Interleucina-17 , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Receptores de Interleucina-17/genética , Camundongos Knockout , Transdução de Sinais , Neoplasias Pancreáticas/patologia
7.
Br J Cancer ; 129(11): 1727-1746, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37752289

RESUMO

In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.


Assuntos
Neoplasias Encefálicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Biópsia Líquida/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Encéfalo/patologia , Biomarcadores Tumorais/genética
8.
Mol Cell Biol ; 43(8): 401-425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37439479

RESUMO

Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.


Assuntos
DDT , Reparo do DNA , Humanos , Replicação do DNA , DNA/genética , Dano ao DNA , Instabilidade Genômica
9.
Nat Med ; 29(6): 1550-1562, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248301

RESUMO

Tumor-infiltrating T cells offer a promising avenue for cancer treatment, yet their states remain to be fully characterized. Here we present a single-cell atlas of T cells from 308,048 transcriptomes across 16 cancer types, uncovering previously undescribed T cell states and heterogeneous subpopulations of follicular helper, regulatory and proliferative T cells. We identified a unique stress response state, TSTR, characterized by heat shock gene expression. TSTR cells are detectable in situ in the tumor microenvironment across various cancer types, mostly within lymphocyte aggregates or potential tertiary lymphoid structures in tumor beds or surrounding tumor edges. T cell states/compositions correlated with genomic, pathological and clinical features in 375 patients from 23 cohorts, including 171 patients who received immune checkpoint blockade therapy. We also found significantly upregulated heat shock gene expression in intratumoral CD4/CD8+ cells following immune checkpoint blockade treatment, particularly in nonresponsive tumors, suggesting a potential role of TSTR cells in immunotherapy resistance. Our well-annotated T cell reference maps, web portal and automatic alignment/annotation tool could provide valuable resources for T cell therapy optimization and biomarker discovery.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral
10.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066184

RESUMO

Glioblastomas (GBMs) are tumors of the central nervous system that remain recalcitrant to both standard of care chemo-radiation and immunotherapies. Emerging approaches to treat GBMs include depletion or re-education of innate immune cells including microglia (MG) and macrophages (MACs). Here we show myeloid cell restricted expression of triggering receptor expressed on myeloid cells 2 (TREM2) across low- and high-grade human gliomas. TREM2 expression did not correlate with immunosuppressive pathways, but rather showed strong positive association with phagocytosis markers such as lysozyme (LYZ) and CD163 in gliomas. In line with these observations in patient tumors, Trem2-/- mice did not exhibit improved survival compared to wildtype (WT) mice when implanted with mouse glioma cell lines, unlike observations previously seen in peripheral tumor models. Gene expression profiling revealed pathways related to inflammation, adaptive immunity, and autophagy that were significantly downregulated in tumors from Trem2-/- mice compared to WT tumors. Using ZsGreen-expressing CT-2A orthotopic implants, we found higher tumor antigen engulfment in Trem2+ MACs, MG, and dendritic cells. Our data uncover TREM2 as an important immunomodulator in gliomas and inducing TREM2 mediated phagocytosis can be a potential immunotherapeutic strategy for brain tumors.

11.
PLoS One ; 18(2): e0277176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795646

RESUMO

Tumor growth is a spatiotemporal birth-and-death process with loss of heterotypic contact-inhibition of locomotion (CIL) of tumor cells promoting invasion and metastasis. Therefore, representing tumor cells as two-dimensional points, we can expect the tumor tissues in histology slides to reflect realizations of spatial birth-and-death process which can be mathematically modeled to reveal molecular mechanisms of CIL, provided the mathematics models the inhibitory interactions. Gibbs process as an inhibitory point process is a natural choice since it is an equilibrium process of the spatial birth-and-death process. That is if the tumor cells maintain homotypic contact inhibition, the spatial distributions of tumor cells will result in Gibbs hard core process over long time scales. In order to verify if this is the case, we applied the Gibbs process to 411 TCGA Glioblastoma multiforme patient images. Our imaging dataset included all cases for which diagnostic slide images were available. The model revealed two groups of patients, one of which - the "Gibbs group," showed the convergence of the Gibbs process with significant survival difference. Further smoothing the discretized (and noisy) inhibition metric, for both increasing and randomized survival time, we found a significant association of the patients in the Gibbs group with increasing survival time. The mean inhibition metric also revealed the point at which the homotypic CIL establishes in tumor cells. Besides, RNAseq analysis between patients with loss of heterotypic CIL and intact homotypic CIL in the Gibbs group unveiled cell movement gene signatures and differences in Actin cytoskeleton and RhoA signaling pathways as key molecular alterations. These genes and pathways have established roles in CIL. Taken together, our integrated analysis of patient images and RNAseq data provides for the first time a mathematical basis for CIL in tumors, explains survival as well as uncovers the underlying molecular landscape for this key tumor invasion and metastatic phenomenon.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Movimento Celular/fisiologia , Transdução de Sinais
12.
Ther Adv Med Oncol ; 14: 17588359221127678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36579028

RESUMO

Introduction: Glioblastoma (GBM), isocitrate dehydrogenase (IDH) wild-type (IDH wt), and grade 4 astrocytomas, IDH mutant (IDH mut), are the most common and aggressive primary malignant brain tumors in adults. A better understanding of the tumor immune microenvironment may provide new biomarkers and therapeutic opportunities. Objectives: We aimed to evaluate the expression profile of 730 immuno-oncology-related genes in patients with IDH wt GBM and IDH mut tumors and identify prognostic biomarkers and a gene signature associated with patient survival. Methods: RNA was isolated from formalin-fixed, paraffin-embedded sections of 99 tumor specimens from patients treated with standard therapy. Gene expression profile was assessed using the Pan-Cancer Immune Profiling Panel (Nanostring Technologies, Inc., Seattle, WA, USA). Data analysis was performed using nSolverSoftware and validated in The Cancer Genome Atlas. In addition, we developed a prognostic signature using the cox regression algorithm (Least Absolute Shrinkage and Selection Operator). Results: We found 88 upregulated genes, high immunological functions, and a high macrophage score in IDH wt GBM compared to IDH mut tumors. Regarding IDH wt GBM, we found 24 upregulated genes in short-term survivors (STS) and overexpression of CD274 (programmed death-ligand 1, PD-L1). Immune pathways, CD45, cytotoxic, and macrophage scores were upregulated in STS. Two different prognostic groups were found based on the 12-gene signature (CXCL14, PSEN2, TNFRSF13C, IL13RA1, MAP2K1, TNFSF14, THY1, CTSL, ITGAE, CHUK, CD207, and IFITM1). Conclusion: The elevated expression of immune-oncology-related genes was associated with worse outcome in IDH wt GBM patients. Increased immune functions, CD45, cytotoxic cells, and macrophage scores were associated with a more aggressive phenotype and may provide promising possibilities for therapy. Moreover, a 12 gene-based signature could predict patients' prognosis.

13.
Front Oncol ; 12: 941657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059614

RESUMO

Treatment-resistant glioma stem cells are thought to propagate and drive growth of malignant gliomas, but their markers and our ability to target them specifically are not well understood. We demonstrate that podoplanin (PDPN) expression is an independent prognostic marker in gliomas across multiple independent patient cohorts comprising both high- and low-grade gliomas. Knockdown of PDPN radiosensitized glioma cell lines and glioma-stem-like cells (GSCs). Clonogenic assays and xenograft experiments revealed that PDPN expression was associated with radiotherapy resistance and tumor aggressiveness. We further demonstrate that knockdown of PDPN in GSCs in vivo is sufficient to improve overall survival in an intracranial xenograft mouse model. PDPN therefore identifies a subset of aggressive, treatment-resistant glioma cells responsible for radiation resistance and may serve as a novel therapeutic target.

14.
Semin Immunopathol ; 44(5): 725-738, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35508671

RESUMO

Cell death, be it of neurons or glial cells, marks the development of the nervous system. Albeit relatively less so than in tissues such as the gut, cell death is also a feature of nervous system homeostasis-especially in context of adult neurogenesis. Finally, cell death is commonplace in acute brain injuries, chronic neurodegenerative diseases, and in some central nervous system tumors such as glioblastoma. Recent studies are enumerating the various molecular modalities involved in the execution of cells. Intimately linked with cell death are mechanisms of disposal that remove the dead cell and bring about a tissue-level response. Heretofore, the association between these methods of dying and physiological or pathological responses has remained nebulous. It is envisioned that careful cartography of death and disposal may reveal novel understandings of disease states and chart new therapeutic strategies in the near future.


Assuntos
Sistema Nervoso , Neurogênese , Adulto , Morte Celular , Homeostase , Humanos , Neurogênese/fisiologia , Neurônios
15.
Nat Commun ; 12(1): 5606, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556668

RESUMO

Immune checkpoint therapy (ICT) provides substantial clinical benefits to cancer patients, but a large proportion of cancers do not respond to ICT. To date, the genomic underpinnings of primary resistance to ICT remain elusive. Here, we performed immunogenomic analysis of data from TCGA and clinical trials of anti-PD-1/PD-L1 therapy, with a particular focus on homozygous deletion of 9p21.3 (9p21 loss), one of the most frequent genomic defects occurring in ~13% of all cancers. We demonstrate that 9p21 loss confers "cold" tumor-immune phenotypes, characterized by reduced abundance of tumor-infiltrating leukocytes (TILs), particularly, T/B/NK cells, altered spatial TILs patterns, diminished immune cell trafficking/activation, decreased rate of PD-L1 positivity, along with activation of immunosuppressive signaling. Notably, patients with 9p21 loss exhibited significantly lower response rates to ICT and worse outcomes, which were corroborated in eight ICT trials of >1,000 patients. Further, 9p21 loss synergizes with PD-L1/TMB for patient stratification. A "response score" was derived by incorporating 9p21 loss, PD-L1 expression and TMB levels in pre-treatment tumors, which outperforms PD-L1, TMB, and their combination in identifying patients with high likelihood of achieving sustained response from otherwise non-responders. Moreover, we describe potential druggable targets in 9p21-loss tumors, which could be exploited to design rational therapeutic interventions.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral/imunologia , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Resistencia a Medicamentos Antineoplásicos/genética , Homozigoto , Humanos , Tolerância Imunológica , Imunoterapia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/mortalidade , Prognóstico , Transdução de Sinais/imunologia
16.
Sci Rep ; 11(1): 14556, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267246

RESUMO

Cell-to-cell communication is essential for the development and proper function of multicellular systems. We and others demonstrated that tunneling nanotubes (TNT) proliferate in several pathological conditions such as HIV, cancer, and neurodegenerative diseases. However, the nature, function, and contribution of TNT to cancer pathogenesis are poorly understood. Our analyses demonstrate that TNT structures are induced between glioblastoma (GBM) cells and surrounding non-tumor astrocytes to transfer tumor-derived mitochondria. The mitochondrial transfer mediated by TNT resulted in the adaptation of non-tumor astrocytes to tumor-like metabolism and hypoxia conditions. In conclusion, TNT are an efficient cell-to-cell communication system used by cancer cells to adapt the microenvironment to the invasive nature of the tumor.


Assuntos
Astrócitos/patologia , Glioblastoma/patologia , Mitocôndrias/patologia , Astrócitos/metabolismo , Comunicação Celular , Hipóxia Celular , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , DNA Mitocondrial , Humanos , Microdissecção e Captura a Laser , Microscopia Eletrônica de Transmissão , Mitocôndrias/genética , Estresse Oxidativo , Microambiente Tumoral
17.
Mol Cell Biol ; 41(7): e0008221, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33941620

RESUMO

Vigilin (Vgl1) is essential for heterochromatin formation, chromosome segregation, and mRNA stability and is associated with autism spectrum disorders and cancer: vigilin, for example, can suppress proto-oncogene c-fms expression in breast cancer. Conserved from yeast to humans, vigilin is an RNA-binding protein with 14 tandemly arranged nonidentical hnRNP K-type homology (KH) domains. Here, we report that vigilin depletion increased cell sensitivity to cisplatin- or ionizing radiation (IR)-induced cell death and genomic instability due to defective DNA repair. Vigilin depletion delayed dephosphorylation of IR-induced γ-H2AX and elevated levels of residual 53BP1 and RIF1 foci, while reducing Rad51 and BRCA1 focus formation, DNA end resection, and double-strand break (DSB) repair. We show that vigilin interacts with the DNA damage response (DDR) proteins RAD51 and BRCA1, and vigilin depletion impairs their recruitment to DSB sites. Transient hydroxyurea (HU)-induced replicative stress in vigilin-depleted cells increased replication fork stalling and blocked restart of DNA synthesis. Furthermore, histone acetylation promoted vigilin recruitment to DSBs preferentially in the transcriptionally active genome. These findings uncover a novel vigilin role in DNA damage repair with implications for autism and cancer-related disorders.


Assuntos
Transtorno Autístico/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Instabilidade Genômica/fisiologia , Proteína BRCA1 , Reparo do DNA/fisiologia , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Proto-Oncogene Mas , Proteínas de Ligação a RNA/metabolismo , Rad51 Recombinase/genética
18.
Reports (MDPI) ; 4(4)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35937580

RESUMO

"Tumor-educated platelets" have recently generated substantial interest for the diagnosis of cancer. We hypothesized that tumor educated platelets from patients with brain tumors will reflect altered metabolism compared to platelets from healthy volunteers. Here, in a pilot study, we have employed nuclear magnetic resonance (NMR) spectroscopy in platelets from brain tumor patients to demonstrate altered metabolism compared to the platelets obtained from healthy volunteers.

19.
Nat Commun ; 11(1): 4660, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938908

RESUMO

Intratumor spatial heterogeneity facilitates therapeutic resistance in glioblastoma (GBM). Nonetheless, understanding of GBM heterogeneity is largely limited to the surgically resectable tumor core lesion while the seeds for recurrence reside in the unresectable tumor edge. In this study, stratification of GBM to core and edge demonstrates clinically relevant surgical sequelae. We establish regionally derived models of GBM edge and core that retain their spatial identity in a cell autonomous manner. Upon xenotransplantation, edge-derived cells show a higher capacity for infiltrative growth, while core cells demonstrate core lesions with greater therapy resistance. Investigation of intercellular signaling between these two tumor populations uncovers the paracrine crosstalk from tumor core that promotes malignancy and therapy resistance of edge cells. These phenotypic alterations are initiated by HDAC1 in GBM core cells which subsequently affect edge cells by secreting the soluble form of CD109 protein. Our data reveal the role of intracellular communication between regionally different populations of GBM cells in tumor recurrence.


Assuntos
Antígenos CD/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Histona Desacetilase 1/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Feminino , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Camundongos SCID , Fenilbutiratos/farmacologia , Transdução de Sinais , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
iScience ; 23(9): 101450, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32882515

RESUMO

Glioblastoma (GBM) is the most prevalent and aggressive tumor in the central nervous system. Surgical resection followed by concurrent radiotherapy (ionizing radiation [IR]) and temozolomide (TMZ) is the standard of care for GBM. However, a large subset of patients offer resistance or become adapted to TMZ due mainly to the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). Thus, alternative mechanisms of MGMT deregulation have been proposed but are heretofore unproven. We show that heterogeneous GBM cells express tunneling nanotubes (TNTs) upon oxidative stress and TMZ/IR treatment. We identified that MGMT protein diffused from resistant to sensitive cells upon exposure to TMZ/IR, resulting in protection against cytotoxic therapy in a TNT-dependent manner. In vivo analysis of resected GBM tumors support our hypothesis that the MGMT protein, but not its mRNA, was associated with TNT biomarkers. We propose that targeting TNT formation could be an innovative strategy to overcome treatment resistance in GBM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA