Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 1(11): 1747-1756, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28963452

RESUMO

The tobacco cutworm, Spodoptera litura, is among the most widespread and destructive agricultural pests, feeding on over 100 crops throughout tropical and subtropical Asia. By genome sequencing, physical mapping and transcriptome analysis, we found that the gene families encoding receptors for bitter or toxic substances and detoxification enzymes, such as cytochrome P450, carboxylesterase and glutathione-S-transferase, were massively expanded in this polyphagous species, enabling its extraordinary ability to detect and detoxify many plant secondary compounds. Larval exposure to insecticidal toxins induced expression of detoxification genes, and knockdown of representative genes using short interfering RNA (siRNA) reduced larval survival, consistent with their contribution to the insect's natural pesticide tolerance. A population genetics study indicated that this species expanded throughout southeast Asia by migrating along a South India-South China-Japan axis, adapting to wide-ranging ecological conditions with diverse host plants and insecticides, surviving and adapting with the aid of its expanded detoxification systems. The findings of this study will enable the development of new pest management strategies for the control of major agricultural pests such as S. litura.


Assuntos
Genoma de Inseto , Herbivoria , Inativação Metabólica , Inseticidas/metabolismo , Spodoptera/genética , Adaptação Biológica , Animais , Mapeamento Cromossômico , Dieta , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Spodoptera/crescimento & desenvolvimento , Spodoptera/fisiologia , Sequenciamento Completo do Genoma
2.
J Med Chem ; 60(20): 8298-8308, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28949547

RESUMO

Hemoglobin degradation/hemozoin formation, essential steps in the Plasmodium life cycle, are targets of existing antimalarials. The pathway still offers vast possibilities to be explored for new antimalarial discoveries. Here, we characterize heme detoxification protein, PfHDP, a major protein involved in hemozoin formation, as a novel drug target. Using in silico and biochemical approaches, we identified two heme binding sites and a hemoglobin binding site in PfHDP. Treatment of Plasmodium falciparum 3D7 parasites with peptide corresponding to the hemoglobin binding domain in PfHDP resulted in food vacuole abnormalities similar to that seen with a cysteine protease inhibitor, E-64 (I-1). Screening of compounds that bound the modeled PfHDP structure in the heme/hemoglobin-binding pockets from Maybridge Screening Collection identified a compound, ML-2, that inhibited parasite growth in a dose-dependent manner, thus paving the way for testing its potential as a new drug candidate. These results provide functional insights into the role of PfHDP in Hz formation and further suggest that PfHDP could be an important drug target to combat malaria.


Assuntos
Antimaláricos/farmacologia , Heme/metabolismo , Hemoglobinas/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/metabolismo , Sítios de Ligação , Simulação por Computador , Descoberta de Drogas , Hemeproteínas/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Deleção de Sequência
3.
J Biol Chem ; 292(30): 12577-12588, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28584057

RESUMO

Persistent or chronic infection with the hepatitis B virus (HBV) represents one of the most common viral diseases in humans. The hepatitis B virus deploys the hepatitis B virus X protein (HBx) as a suppressor of host defenses consisting of RNAi-based silencing of viral genes. Because of its critical role in countering host defenses, HBx represents an attractive target for antiviral drugs. Here, we developed and optimized a loss-of-function screening procedure, which identified a potential pharmacophore that abrogated HBx RNAi suppression activity. In a survey of 14,400 compounds in the Maybridge Screening Collection, we prioritized candidate compounds via high-throughput screening based on reversal of green fluorescent protein (GFP)-reported, RNAi-mediated silencing in a HepG2/GFP-shRNA RNAi sensor line. The screening yielded a pharmacologically active compound, N-(2,4-difluorophenyl)-N'-[3-(1H-imidazol-1-yl) propyl] thiourea (IR415), which blocked HBx-mediated RNAi suppression indicated by the GFP reporter assay. We also found that IR415 reversed the inhibitory effect of HBx protein on activity of the Dicer endoribonuclease. We further confirmed the results of the primary screen in IR415-treated, HBV-infected HepG2 cells, which exhibited a marked depletion of HBV core protein synthesis and down-regulation of pre-genomic HBV RNA. Using a molecular interaction analysis system, we confirmed that IR415 selectively targets HBx in a concentration-dependent manner. The screening assay presented here allows rapid and improved detection of small-molecule inhibitors of HBx and related viral proteins. The assay may therefore potentiate the development of next-generation RNAi pathway-based therapeutics and promises to accelerate our search for novel and effective drugs in antiviral research.


Assuntos
Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala , Interferência de RNA , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos , Células Hep G2 , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/química
4.
Sci Rep ; 6: 38065, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901124

RESUMO

RNAi pathway is an antiviral defence mechanism employed by insects that result in degradation of viral RNA thereby curbing infection. Several viruses including flaviviruses encode viral suppressors of RNAi (VSRs) to counteract the antiviral RNAi pathway. Till date, no VSR has been reported in alphaviruses. The present study was undertaken to evaluate chikungunya virus (CHIKV) proteins for RNAi suppressor activity. We systematically analyzed all nine CHIKV proteins for RNAi suppressor activity using Sf21 RNAi sensor cell line based assay. Two non-structural proteins, namely, nsP2 and nsP3 were found to exhibit RNAi suppressor activity. We further validated the findings in natural hosts, namely in Aedes and in mammalian cell lines and further through EMSA and Agrobacterium infiltration in GFP silenced transgenic tobacco plants. Domains responsible for maximum RNAi suppressor activity were also identified within these proteins. RNA binding motifs in these domains were identified and their participation in RNAi suppression evaluated using site directed mutagenesis. Sequence alignment of these motifs across all species of known alphaviruses revealed conservation of these motifs emphasizing on a similar role of action in other species of alphaviruses as well. Further validation of RNAi suppressor activity of these proteins awaits establishment of specific virus infection models.


Assuntos
Vírus Chikungunya/metabolismo , Interferência de RNA , Proteínas não Estruturais Virais/metabolismo , Aedes/metabolismo , Aedes/virologia , Animais , Vírus Chikungunya/genética , Células HEK293 , Humanos , Células Sf9 , Spodoptera , Proteínas não Estruturais Virais/genética
5.
Virol J ; 13: 86, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251040

RESUMO

BACKGROUND: RNA viruses are characterized by high rate of mutations mainly due to the lack of proofreading repair activities associated with its RNA-dependent RNA-polymerase (RdRp). In case of arboviruses, this phenomenon has lead to the existence of mixed population of genomic variants within the host called quasi-species. The stability of strains within the quasi-species lies on mutations that are positively selected which in turn depend on whether these mutations are beneficial in either or both hosts. Coevolution of amino acids (aa) is one phenomenon that leads to establishment of favorable traits in viruses and leading to their fitness. RESULTS: Fourteen CHIKV clinical samples collected over three years were subjected to RT-PCR, the four non-structural genes amplified and subjected to various genetic analyses. Coevolution analysis showed 30 aa pairs coevolving in nsP1, 23 aa pairs coevolving in nsP2, 239 in nsP3 and 46 aa coevolving pairs in nsP4 when each non-structural protein was considered independently. Further analysis showed that 705 amino acids pairs of the non-structural polyproteins coevolved together with a correlation coefficient of ≥0.5. Functional relevance of these coevolving amino acids in all the nonstructural proteins of CHIKV were predicted using Eukaryotic Linear Motifs (ELMs) of human. CONCLUSIONS: The present study was undertaken to study co-evolving amino acids in the non-structural proteins of chikungunya virus (CHIKV), an important arbovirus. It was observed that several amino acids residues were coevolving and shared common functions.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Evolução Molecular , Proteínas não Estruturais Virais/genética , Aminoácidos/genética , Vírus Chikungunya/isolamento & purificação , Humanos , Análise de Sequência de DNA
6.
Gene ; 586(1): 7-11, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27039024

RESUMO

In recent times, RNAi has emerged as an important defence system that regulates replication of pathogens in host cells. Many RNAi related host factors especially the host miRNAs play important roles in all intrinsic cellular functions, including viral infection. We have been working on identification of mammalian host factors involved in Dengue virus infection. In the present study, we identified Glucose Regulated Protein 75kDa (GRP75), as a host factor that is associated with dicer complex, in particular with HADHA (trifunctional enzyme subunit alpha, mitochondrial), an auxiliary component of dicer complex. Knockdown of GRP75 by respective siRNAs in Huh-7 cells resulted in the accumulation of dengue viral genomic RNA suggesting a role of GRP75 in regulating dengue virus replication in human cell lines. To elucidate the mode of action of GRP75, we over expressed the protein in Huh-7 cells and analysed the host miRNAs processing. The results revealed that, GRP75 is involved in processing of host miRNA, hsa-mir-126, that down regulates dengue virus replication. These findings suggest a regulatory role of human miRNA pathway especially GRP75 protein and hsa-mir-126 in dengue virus replication. These results thus provide insights into the role of miRNAs and RNAi machinery in dengue life cycle.


Assuntos
Vírus da Dengue/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , MicroRNAs/metabolismo , Proteínas Mitocondriais/metabolismo , Replicação Viral , Linhagem Celular Tumoral , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas Mitocondriais/genética , Processamento Pós-Transcricional do RNA , Ribonuclease III/metabolismo
7.
Biol Direct ; 10: 44, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26290335

RESUMO

Spodoptera is an important polyphagous agricultural insect pest in the tropical world. The genomic details are limited to understand the pest biology at molecular level. In the present study, we sequenced and assembled the transcriptome from Sf21 cells into a non redundant set of 24,038 contigs of ~ 47.38 Mb in size. A total of 26,390 unigenes were identified from the assembled transcripts and their annotation revealed the prevalent protein domains in Sf21 cells. The present study would provide a resource for gene discovery and development of functional molecular markers to understand the biology of S. frugiperda.


Assuntos
Genoma de Inseto , Proteínas de Insetos/genética , Spodoptera/genética , Transcriptoma , Animais , Análise de Sequência de DNA , Células Sf9
8.
Transgenic Res ; 24(5): 791-801, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25947089

RESUMO

The success of Bt transgenics in controlling predation of crops has been tempered by sporadic emergence of resistance in targeted insect larvae. Such emerging threats have prompted the search for novel insecticidal molecules that are specific and could be expressed through plants. We have resorted to small RNA-based technology for an investigative search and focused our attention to an insect-specific miRNA that interferes with the insect molting process resulting in the death of the larvae. In this study, we report the designing of a vector that produces artificial microRNA (amiR), namely amiR-24, which targets the chitinase gene of Helicoverpa armigera. This vector was used as transgene in tobacco. Northern blot and real-time analysis revealed the high level expression of amiR-24 in transgenic tobacco plants. Larvae feeding on the transgenic plants ceased to molt further and eventually died. Our results demonstrate that transgenic tobacco plants can express amiR-24 insectice specific to H. armigera.


Assuntos
Insetos/patogenicidade , Larva/patogenicidade , MicroRNAs/genética , Mariposas/patogenicidade , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Animais , Bacillus thuringiensis/metabolismo , Toxinas Bacterianas/farmacologia , Insetos/crescimento & desenvolvimento , Nicotiana/genética
9.
Int J Radiat Biol ; 90(1): 7-19, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23952301

RESUMO

PURPOSE: To investigate age-correlated radiosensitivity in highly radioresistant lepidopteran pest, Helicoverpa armigera, upon exposure to ionizing radiation and to examine the irradiation impact on stress-molecular responses in F1 (first-filial) progeny of irradiated (100 Gy) male moths in relation to its reproductive behavior. MATERIALS AND METHODS: Efficacy of sub-lethal gamma radiation was evaluated on two markedly apart ontogenic stages, neonates and adult moths. Differential growth, reproductive behavior and stress-indicating molecular responses were examined upto F1 progeny of sub-sterilized moths. Free-radical scavenging enzymes, superoxide dismutase (SOD), catalase (CAT) and Phenoloxidase cascade enzymes, pro-phenoloxidase (PPO), its activating enzyme (PPAE) were studied in irradiated and irradiated plus microbial challenge regimen (dual-stress) by Real-time RT-PCR (reverse-transcription-polymerase-chain-reaction). RESULTS: An inverse correlation of radiosensitivity with developmental age of insect was observed. F1 sterility was higher than parent sterility. F1 progeny exhibited protraction in development and decreased survival upon irradiation. Sex ratio in F1 progeny was skewed towards males. PPO, PPAE, SOD and CAT transcripts were downregulated upon neonate irradiation resulting in enhanced vulnerability of larvae to incidental microbial challenge. These transcripts were upregulated in F1 progeny of sub-sterilized male moths (100 Gy) upon dual-stress. CONCLUSIONS: Irradiation impact on stress-indicating molecular responses in F1 progeny is correlated with its reproductive performance. These observations will permit defining regimen having pragmatic viability of 'F1 sterility technique' for pest suppression. Gamma dose of 100 Gy would ensure balance between induced sterility of males and their field competitiveness. These parameters would facilitate integration of biocontrol strategy with parabiological 'Sterile Insect Release Technique'.


Assuntos
Antioxidantes/metabolismo , Raios gama , Infertilidade Masculina/etiologia , Lepidópteros/efeitos da radiação , Monofenol Mono-Oxigenase/efeitos da radiação , Controle Biológico de Vetores/métodos , Envelhecimento/fisiologia , Envelhecimento/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Infertilidade Masculina/genética , Lepidópteros/fisiologia , Masculino , Monofenol Mono-Oxigenase/metabolismo , Doses de Radiação , Reprodução/fisiologia , Reprodução/efeitos da radiação , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
10.
Mol Biochem Parasitol ; 191(2): 58-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24080030

RESUMO

Subtilisin-like proteases of malaria parasite Plasmodium falciparum (PfSUB1, 2 and 3) are expressed at late asexual blood stages. PfSUB1 and 2 are considered important drug targets due to their essentiality for parasite blood stages and role in merozoite egress and invasion of erythrocytes. We have earlier shown the in vitro serine protease activity of PfSUB3 and its localization at asexual blood stages. In this study, we attempted to identify the biological substrate(s) of PfSUB3 and found parasite profilin (PfPRF) as a substrate of the protease. Eukaryotic profilins are multifunctional proteins with primary role in regulation of actin filament assembly. PfPRF possesses biochemical features of eukaryotic profilins and its rodent ortholog is essential in blood stages. Profilin from related apicomplexan parasite Toxoplasma gondii (TgPRF) is known to be involved in parasite motility, host cell invasion, active egress from host cell, immune evasion and virulence in mice. In this study, mature PfSUB3 proteolysed recombinant PfPRF in a dose-dependent manner in in vitro assays. Recombinant PfPRF was assessed for its proinflammatory activity and found to induce high level of TNF-α and low but significant level of IL-12 from mouse bone marrow-derived dendritic cells. Proteolysis of PfPRF by PfSUB3 is suggestive of the probable role of the protease in the processes of motility, virulence and immune evasion.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/enzimologia , Profilinas/metabolismo , Proteínas de Protozoários/metabolismo , Subtilisina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Humanos , Interleucina-12/genética , Interleucina-12/metabolismo , Malária Falciparum/genética , Malária Falciparum/metabolismo , Camundongos , Dados de Sequência Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Profilinas/genética , Ligação Proteica , Proteólise , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos , Subtilisina/química , Subtilisina/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
PLoS One ; 7(7): e41202, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848443

RESUMO

Pseudomonas aeruginosa (PA) is a ubiquitous opportunistic pathogen that is capable of causing highly problematic, chronic infections in cystic fibrosis and chronic obstructive pulmonary disease patients. With the increased prevalence of multi-drug resistant PA, the conventional "one gene, one drug, one disease" paradigm is losing effectiveness. Network pharmacology, on the other hand, may hold the promise of discovering new drug targets to treat a variety of PA infections. However, given the urgent need for novel drug target discovery, a PA protein-protein interaction (PPI) network of high accuracy and coverage, has not yet been constructed. In this study, we predicted a genome-scale PPI network of PA by integrating various genomic features of PA proteins/genes by a machine learning-based approach. A total of 54,107 interactions covering 4,181 proteins in PA were predicted. A high-confidence network combining predicted high-confidence interactions, a reference set and verified interactions that consist of 3,343 proteins and 19,416 potential interactions was further assembled and analyzed. The predicted interactome network from this study is the first large-scale PPI network in PA with significant coverage and high accuracy. Subsequent analysis, including validations based on existing small-scale PPI data and the network structure comparison with other model organisms, shows the validity of the predicted PPI network. Potential drug targets were identified and prioritized based on their essentiality and topological importance in the high-confidence network. Host-pathogen protein interactions between human and PA were further extracted and analyzed. In addition, case studies were performed on protein interactions regarding anti-sigma factor MucA, negative periplasmic alginate regulator MucB, and the transcriptional regulator RhlR. A web server to access the predicted PPI dataset is available at http://research.cchmc.org/PPIdatabase/.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Liberação de Medicamentos , Modelos Biológicos , Proteoma/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Descoberta de Drogas/métodos , Humanos , Internet , Infecções por Pseudomonas/tratamento farmacológico
12.
Virol J ; 9: 100, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632412

RESUMO

BACKGROUND: Chikungunya (CHIK) is currently endemic in South and Central India and exist as co-infections with dengue in Northern India. In 2010, New Delhi witnessed an outbreak of CHIK in the months October-December. This was the first incidence of a dominant CHIK outbreak in Delhi and prompted us to characterize the Delhi virus strains. We have also investigated the evolution of CHIK spread in India. FINDINGS: Clinical samples were subjected to RT-PCR to detect CHIK viral RNA. The PCR amplified products were sequenced and the resulting sequences were genetically analyzed. Phylogenetic analysis based on partial sequences of the structural proteins E1 and E2 revealed that the viruses in the latest outbreak exhibited ECSA lineage. Two novel mutations, E1 K211E and E2 V264A were observed in all Delhi isolates. In addition, CHIKV sequences from eight states in India were analyzed along with Delhi sequences to map the genetic diversity of CHIKV within the country. Estimates of average evolutionary divergence within states showed varying divergence among the sequences both within the states and between the states. We identified distinct molecular signatures of the different genotypes of CHIKV revealing emergence of a new signature in the New Delhi clade. Statistical analyses and construction of evolutionary path of the virus within the country revealed gradual spread of one specific strain all over the country. CONCLUSION: This study has identified unique mutations in the E1 and E2 genes and has revealed the presence of ancestral CHIKV population with maximum diversity circulating in Maharashtra. The study has further revealed the trend of CHIK spread in India since its first report in 1963 and its subsequent reappearance in 2005.


Assuntos
Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/virologia , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Surtos de Doenças , Variação Genética , RNA Viral/genética , Vírus Chikungunya/isolamento & purificação , Análise por Conglomerados , Humanos , Índia/epidemiologia , Mutação de Sentido Incorreto , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Estruturais Virais/genética
13.
Curr Microbiol ; 62(2): 597-605, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20835830

RESUMO

Insecticidal proteins produced by strains of Bacillus thuringenesis are specific toward target pests. One of the Bt proteins, Cry 1Ac has been used successfully for controlling crop predation by polyphagous pests Helicoverpa armigera. Structurally, Bt proteins consist of three domains; domain I and III are fairly homologous in various Bt proteins while domain II is hypervariable. The hypervariable domain II is believed to be responsible for specificity toward target pest. Successful deployment of Bt proteins requires knowledge of its specificity toward the insect. Various Bt proteins have been characterized for activity against coleopteran pests. Some Bt proteins of class Cry6 have been found to be active against potato weevil. We have evaluated the activity of Cry6B protein (BGSC-4D8) against lucerne weevil, Hypera postica, which is a major pest of forage crop Medicago sativa. Results revealed that the purified Cry6B protein is significantly active against the coleopteran pest with LC50 value 280 ng/µl. The leaves coated with the purified Cry6 toxin were three times less damaged as compared with the negative control.


Assuntos
Bacillus thuringiensis/patogenicidade , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Gorgulhos/efeitos dos fármacos , Animais , Toxinas de Bacillus thuringiensis , Larva/efeitos dos fármacos , Medicago sativa/parasitologia , Análise de Sobrevida
14.
J Med Entomol ; 47(6): 1220-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21175075

RESUMO

Anopheles culicifacies is the main vector for transmission of Plasmodium vivax malaria in the Indian subcontinent. A strain of An. culicifacies isolated from its natural niche displayed complete refractoriness to P. vivax by melanotic encapsulation of ookinetes. Prophenoloxidases are key components of the phenoloxidase cascade that leads to recognition and melanization of invading organisms. We isolated and cloned prophenoloxidase-encoding acppo6 gene of An. culicifacies and analyzed its expression profile under various regimens of immune challenge. The acppo6 was differentially expressed during various stages of larval development. The acppo6 transcription was also up-regulated in response to bacteria and Plasmodium vinckei petteri challenge. The transcript levels of the acppo6 gene were higher in naive adult refractory female mosquitoes as compared with female susceptible mosquitoes. Furthermore, the induction of acppo6 in the susceptible strain upon Plasmodium infection was negligible as compared with that of the refractory strain. The observation is suggestive of the role of acppo6 in effectuating a melanotic response in Plasmodium-incompetent naturally occurring refractory An. culicifacies strain.


Assuntos
Anopheles/enzimologia , Anopheles/genética , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Perfilação da Expressão Gênica , Plasmodium vivax/fisiologia , Sequência de Aminoácidos , Animais , Anopheles/parasitologia , Feminino , Regulação Enzimológica da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Dados de Sequência Molecular
15.
Appl Environ Microbiol ; 76(21): 7202-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833785

RESUMO

Vegetative insecticidal protein (Vip3A) is synthesized as an extracellular insecticidal toxin by certain strains of Bacillus thuringiensis. Vip3A is active against several lepidopteran pests of crops. Polyphagous pest, Spodoptera frugiperda, and its cell line Sf21 are sensitive for lyses to Vip3A. Screening of cDNA library prepared from Sf21 cells through yeast two-hybrid system with Vip3A as bait identified ribosomal protein S2 as a toxicity-mediating interacting partner protein. The Vip3A-ribosomal-S2 protein interaction was validated by in vitro pulldown assays and by RNA interference-induced knockdown experiments. Knockdown of expression of S2 protein in Sf21 cells resulted in reduced toxicity of the Vip3A protein. These observations were further extended to adult fifth-instar larvae of Spodoptera litura. Knockdown of S2 expression by injecting corresponding double-stranded RNA resulted in reduced mortality of larvae to Vip3A toxin. Intracellular visualization of S2 protein and Vip3A through confocal microscopy revealed their interaction and localization in cytoplasm and surface of Sf21 cells.


Assuntos
Bacillus thuringiensis/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas Ribossômicas/fisiologia , Spodoptera/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Northern Blotting , Linhagem Celular , Larva , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/metabolismo , Spodoptera/efeitos dos fármacos
16.
Arch Insect Biochem Physiol ; 72(2): 61-73, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19557749

RESUMO

One of the important trigger molecules for innate immunity is a serine protease that activates zymogen phenol oxidase (PPO). Central to wound healing response is the activation of phenol oxidase zymogen. Molecular characterization of phenol oxidase has been recently reported by us. Here, we report isolation, cloning, expression, and purification of prophenol oxidase activating enzyme 1 (slppae1) from polyphagous pest, Spodoptera litura. SLPPAE1 is induced within 6 h of physical injury. The structural features of the mature polypeptide are reminiscent of other lepidopteran PPAE in having a signal peptide, propeptide, and catalytically active polypeptide. The cDNA has been expressed in Sf21 cells using baculovirus expression vector. Fractionation of expressing Sf21 cells revealed its expression in the membranes. The recombinant protein was solubilized from membranes and purified by Ni-NTA affinity chromatography. The purified enzyme is catalytically active on chromogenic substrate, activates recombinantly expressed prophenol oxidase (PPO) of S. litura, and is sensitive to inhibition by aprotenin. N-terminal sequencing of processed phenol oxidase revealed 11 kDa propeptide instead of in-silico predicted 6 kDa polypeptide.


Assuntos
Monofenol Mono-Oxigenase/metabolismo , Serina Endopeptidases/isolamento & purificação , Spodoptera/enzimologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética
17.
Biochem J ; 419(2): 309-16, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19146482

RESUMO

The bacterium Bacillus thuringiensis produces ICPs (insecticidal crystal proteins) that are deposited in their spore mother cells. When susceptible lepidopteran larvae ingest these spore mother cells, the ICPs get solubilized in the alkaline gut environment. Of approx. 140 insecticidal proteins described thus far, insecticidal protein Cry1Ac has been applied extensively as the main ingredient of spray formulation as well as the principal ICP introduced into crops as transgene for agricultural crop protection. The 135 kDa Cry1Ac protein, upon ingestion by the insect, is processed successively at the N- and C-terminus by the insect midgut proteases to generate a 65 kDa bioactive core protein. The activated core protein interacts with specific receptors located at the midgut epithilium resulting in the lysis of cells and eventual death of the larvae. A laboratory-reared population of Helicoverpa armigera displayed 72-fold resistance to the B. thuringiensis insecticidal protein Cry1Ac. A careful zymogram analysis of Cry1Ac-resistant insects revealed an altered proteolytic profile. The altered protease profile resulted in improper processing of the insecticidal protein and as a consequence increased the LC50 concentrations of Cry1Ac. The 135 kDa protoxin-susceptible insect larval population processed the protein to the biologically active 65 kDa core protein, while the resistant insect larval population yielded a mixture of 95 kDa and 68 kDa Cry1Ac polypeptides. N-terminal sequencing of these 95 and 68 kDa polypeptides produced by gut juices of resistant insects revealed an intact N-terminus. Protease gene transcription profiling by semi-quantitative RT (reverse transcription)-PCR led to the identification of a down-regulated HaSP2 (H. armigera serine protease 2) in the Cry1Ac-resistant population. Protease HaSP2 was cloned, expressed and demonstrated to be responsible for proper processing of insecticidal protoxin. The larval population displaying resistance to Cry1Ac do not show an altered sensitivity against another insecticidal protein, Cry2Ab. The implications of these observations in the context of the possibility of development of resistance and its management in H. armigera to Cry1Ac through transgenic crop cultivation are discussed.


Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Lepidópteros/efeitos dos fármacos , Lepidópteros/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Toxinas de Bacillus thuringiensis , Gossypium/genética , Gossypium/metabolismo , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo
18.
J Med Chem ; 51(11): 3116-23, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18461922

RESUMO

Falcipain-2 (FP-2), a papain family cysteine protease of Plasmodium falciparum, is a promising target for antimalarial chemotherapy. Designing inhibitors that are highly selective for falcipain-2 has been difficult because of broad specificity of different cysteine proteinases. Because propeptide regions of cysteine proteases have been shown to inhibit their cognate enzymes specifically and selectively, in the present study, we evaluated the inhibitory potential of few falcipain-2 proregion peptides. A 15 residue peptide (PP1) inhibited falcipain-2 enzyme activity in vitro. Studies on the uptake of PP1 into the parasitized erythrocytes showed access of peptide into the infected RBCs. PP1 fused with Antennapedia homeoprotein internalization domain blocked hemoglobin hydrolysis, merozoite release and markedly inhibited Plasmodium falciparum growth and maturation. Together, our results identify a peptide derived from the proregion of falcipain-2 that blocks late-stage malaria parasite development in RBCs, suggesting the development of peptide and peptidometric drugs against the human malaria parasite.


Assuntos
Antimaláricos/síntese química , Cisteína Endopeptidases/química , Peptídeos/síntese química , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Hemoglobinas/metabolismo , Hidrólise , Técnicas In Vitro , Peptídeos/química , Peptídeos/farmacologia , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
19.
Biochem Biophys Res Commun ; 337(1): 394-400, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16185666

RESUMO

Haemolymph associated phenol oxidase is a critical component of invertebrate immune reaction and cuticle sclerotization. Phenol oxidase catalyses the conversion of mono-phenols to diphenols and quinones which finally leads to melanin formation. We have cloned the c-DNA encoding phenol oxidase from the haemocytes of Spodoptera litura and expressed it in Escherichia coli. The encoding gene is 2452bp with an open reading frame of 2091 bp translating into a 697 amino acid protein. Multiple alignment analysis of the predicted protein sequence shows close homology to other lepidopeteran PPOII type genes. The transcription of the gene is induced upon microbial challenge of 6th instar larvae with E. coli and is unresponsive to injury. Cloning of the ORF of SLPPO in-frame in the E. coli expression vector pQE30 resulted in its expression. Enzymatic analysis of the recombinant protein reveals that the recombinant protein is catalytically active on 4-methyl pyrocatechol upon activation by cetyl pyridinium chloride.


Assuntos
Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Spodoptera/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Catecol Oxidase/biossíntese , Clonagem Molecular , Precursores Enzimáticos/biossíntese , Escherichia coli/genética , Expressão Gênica , Larva/microbiologia , Dados de Sequência Molecular , Alinhamento de Sequência , Spodoptera/crescimento & desenvolvimento , Spodoptera/imunologia
20.
Biochem Biophys Res Commun ; 336(4): 1062-8, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16165088

RESUMO

The process of merozoite release in Plasmodium falciparum involves rupture of the parasitophorous vacuole membrane and erythrocyte plasma membrane. Through the use of protease inhibitors that halt the merozoite release, a number of parasite proteases, especially serine, aspartic, and cysteine proteases, have been implicated in the schizont rupture. To understand the precise role of cysteine proteases in the merozoite release, in the present study, we treated P. falciparum cultures with siRNAs corresponding to falcipain-1, falcipain-2, and falcipain-3, the three papain-family proteases of the parasite. Treatment of malaria parasites with either of the falcipain siRNAs considerably reduced parasite growth. Morphological examination of the siRNA treated parasite cultures revealed that most of the parasites in falcipain-2 siRNA treated cultures were arrested at schizont stage. Analysis of a transgenic P. falciparum line expressing chimeric-GFP upon treatment with falcipain-2 siRNA revealed block in the rupture of erythrocyte membrane at the time of merozoite egression. These results suggest that falcipain-2 is an important parasitic protease that participates in hemoglobin degradation and in the merozoite release.


Assuntos
Cisteína Endopeptidases/fisiologia , Membrana Eritrocítica/parasitologia , Eritrócitos/parasitologia , Plasmodium falciparum/fisiologia , Animais , Células Cultivadas , Cisteína Endopeptidases/genética , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Plasmodium falciparum/enzimologia , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA